Skip to main content
Log in

The direct effects of a tropical natural humic substance to three aquatic species and its influence on their sensitivity to copper

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Few studies have been conducted so far into the effects of humic substances (HS) on aquatic organisms and their influence on the toxicity of chemical pollutants in the tropics. The aim of the present study was therefore to evaluate the direct effects of locally-derived tropical natural HS on the cladoceran Daphnia similis, the midge Chironomus xanthus and the fish Danio rerio. The influence of a HS concentration series on the acute toxicity of copper to these organisms was also assessed through laboratory toxicity testing. The HS did not exert direct acute effects on the test organisms, but long-term exposure to higher HS concentrations provoked a stress response (increase in feces production) to D. rerio and exerted effects on chironomid adult emergence and sex ratio. The biotic ligand model proved to be a useful tool in converting total copper concentrations to the appropriate bio-available fraction to which tropical aquatic organisms are exposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • [ABNT] Associação Brasileira de Normas Técnicas (2004a) NBR 12713. Ecotoxicologia aquática: toxicidade aguda – método de ensaio com Daphnia ssp (Cladocera, crustácea). Rio de Janeiro, Brasil

  • [ABNT] Associação Brasileira de Normas Técnicas (2004b) NBR 15088. Ecotoxicologia aquática: toxicidade aguda – método de ensaio com peixes. Rio de Janeiro, Brasil

  • Al-Reasi HA, Yusuf U, Smith DS, Wood CM (2013) The effect of dissolved organic matter (DOM) on sodium transport and nitrogenous waste excretion of the freshwater cladoceran (Daphnia magna) at circumneutral and low pH. Comp Biochem Phys C 158:207–215

    CAS  Google Scholar 

  • Andriesse JP (1975) Characteristics and formation of so-called red-yellow podzolic soils in the humid tropics (Sarawak-Malaysia). University of Utrecht, The Netherlands, p 187. Doctoral thesis

  • Belger L, Forsberg BR (2006) Factors controlling Hg levels in two predatory fish species in the Negro river basin, Brazilian Amazon. Sci Total Environ 367:451–459

    Article  CAS  Google Scholar 

  • Carriquiriborde P, Mirabella P, Waichman A, Solomon K, Van den Brink PJ, Maund S (2014) Aquatic risk assessment of pesticides in Latin America. Integr Environ Assess Manag 10:539–542

    Article  CAS  Google Scholar 

  • Carvalho P, Thomaz SM, Bini LM (2003) Effects of water level, abiotic and biotic factors on bacterioplankton abundance in lagoons of a tropical floodplain (Paraná River, Brazil). Hydrobiologia 510:67–74

    Article  CAS  Google Scholar 

  • Casali-Pereira MP, Daam MA, de Resende JC, Vasconcelos AM, Espíndola ELG, Botta CMR (2015) Toxicity of Vertimec® 18 EC (active ingredient abamectin) to the neotropical cladoceran Ceriodaphnia silvestrii. Chemosphere 139:558–564

    Article  CAS  Google Scholar 

  • Christoforidis KC, Un S, Deligiannakis Y (2007) High-field 285 GHz electron paramagnetic resonance study of indigenous radicals of humic acids. J Phys Chem A 111:11860–11866

    Article  CAS  Google Scholar 

  • Crémazy A, Wood CM, Smith DS, Ferreira MS, Johannsson OE, Giacomin M, Val AL (2016) Investigating copper toxicity in the tropical fish cardinal tetra (Paracheirodon axelrodi) in natural Amazonian waters: Measurements, modeling, and reality. Aquat Toxicol 180:353–363

    Article  CAS  Google Scholar 

  • Daam MA, Van den Brink PJ (2010) Implications of differences between temperate and tropical freshwater ecosystems for the ecological risk assess- ment of pesticides. Ecotoxicology 19:24–37

    Article  CAS  Google Scholar 

  • De Carvalho-Pereira TSA, Santos TS, Pestana EM, Souza FN, Lage VM, Nunesmaia BJ, Sena PT, Mariano-Neto E, da Silva EM (2015) Natural humic substances effects on the life history traits of Latonopsis australis SARS (1888) (Cladocera – Crustacea). Chemosphere 120:165–170

    Article  CAS  Google Scholar 

  • de Haas EM, Paumen ML, Koelmans AA, Kraak MHS (2004) Combined effects of copper and food on the midge Chironomus riparius in whole-sediment bioassays. Environ Pollut 127:99–107

    Article  CAS  Google Scholar 

  • De Schamphelaere KAC, Heijerick DG, Janssen CR (2002) Refinement and field validation of a biotic ligand model predicting acute copper toxicity to Daphnia magna. Comp Biochem Phys C 133:243–258

    Google Scholar 

  • De Schamphelaere KA, Vasconcelos FM, Tack FM, Allen HE, Janssen CR (2004) Effect of dissolved organic matter source on acute copper toxicity to Daphnia magna. Environ Toxicol Chem 23:1248–1255

    Article  Google Scholar 

  • Di Toro DM, Allen HE, Bergman HL, Meyer JS, Paquin PR, Santore RC (2001) Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environ Toxicol Chem 20:2383–2396

    Article  Google Scholar 

  • Di Valentin C, Neyman KM, Risse T, Sterrer M, Fischbach E, Freund H-J, Nasluzov VA, Pacchioni G, Rösch N (2006) Density-functional model cluster studies of EPR g tensors of Fs+centers on the surface of MgO. J Chem Phys 124:044708

    Article  CAS  Google Scholar 

  • Dornfeld CB (2006) Use of Chironomus sp (Diptera, Chironomidae) to access the quality of sediment and metal contamination. University of São Paulo, Brasil, Doctoral thesis

    Google Scholar 

  • Dornfeld CB, Rodgher S, Negri RG, Espíndola ELG, Daam MA (2018) Chironomus sancticaroli (Diptera, Chironomidae) as a sensitive tropical test species in laboratory bioassays evaluating metals (copper and cadmium) and field testing. Arch Environ Contam Toxicol. https://doi.org/10.1007/s00244-018-0575-1

  • Duarte RM, Smith DS, Val AL, Wood CM (2016) Dissolved organic carbon from the upper Rio Negro protects zebrafish (Danio rerio) against ionoregulatory disturbances caused by low pH exposure. Sci Rep 6:20377

    Article  CAS  Google Scholar 

  • Fong SS, Mohamed M (2007) Chemical characterization of humic substances occurring in the peats of Sarawak, Malaysia. Org Geochem 38:967–976

    Article  CAS  Google Scholar 

  • Fonseca AL, Rocha O (2004) Laboratory cultures of the native species Chironomus xanthus Rempel, 1939 (Diptera-Chironomidae). Acta Limnol Bras 16:153–161

    Google Scholar 

  • Franco de Sá JFO, Val AL (2014) Copper toxicity for Scinax ruber and Rhinella granulosa (Amphibia: Anura) of the Amazon: potential of biotic ligand model to predict toxicity in urban streams. Acta Amazon 44:491–498

    Article  Google Scholar 

  • Gabor TS, Murkin HR, Stainton MP, Boughen JA, Titman RD (1994) Nutrient additions to wetlands in the Interlake region of Manitoba, Canada: effects of a single pulse addition in spring. Hydrobiologia 279/280:497–510

    Article  Google Scholar 

  • García B, Mogollón JL, López L, Rojas A, Bifano C (1994) Humic and fulvic acid characterization in sediments from a contaminated tropical river. Chem Geol 118:271–287

    Article  Google Scholar 

  • Glover CN, Pane EF, Wood CM (2005) Humic substances influence sodium metabolism in the freshwater crustacean Daphnia magna. Physiol Biochem Zool 78:405–416

    Article  CAS  Google Scholar 

  • Gulley DD, Boetter AM, Bergman HL (1996) TOXSTAT release 3.4. University of Wyoming, Laramie, USA

  • Holland A, Duivenvoorden LJ, Kinnear SHW (2014) Humic substances of varying types increase survivorship of the freshwater shrimp Caridina sp. D to acid mine drainage. Ecotoxicology 23:939–945

    Article  CAS  Google Scholar 

  • Holland A, Wood CM, Smith DS, Correia TG, Val AL (2017) Nickel toxicity to cardinal tetra (Paracheirodon axelrodi) differs seasonally and among the black, white and clear river waters of the Amazon basin. Water Res 123:21–29

    Article  CAS  Google Scholar 

  • Horne MT, Dunson WA (1995) The interactive effects of low pH, toxic metals, and DOC on a simulated temporary pond. Environ Pollut 89:155–161

    Article  CAS  Google Scholar 

  • Höss S, Bergtold M, Haitzer M, Traunspurger W, Steinberg CEW (2001) Refractory dissolved organic matter can influence the reproduction of Caenorhabditis elegans (Nematoda). Freshw Biol 46:1–10

    Article  Google Scholar 

  • HydroQual (2002) BLM windows interface. Ver 1.0.0. HydroQual, Mahwah, NJ, USA

    Google Scholar 

  • Kramer KJM, Jak RG, van Hattum B, Hooftman RN, Zwolsman JJG (2004) Copper toxicity in relation to surface water-dissolved organic matter: biological effects to Daphnia magna. Environ Toxicol Chem 23:2971–2980

    Article  Google Scholar 

  • Kukkonen J, Landrum P (1994) Toxicokinetics and toxicity of sediment-associated pyrene to Lumbriculus variegatus (Oligochaeta). Environ Toxicol Chem 13:1457–1468

    Article  CAS  Google Scholar 

  • Kwok KWH, Leung KMY, Lui GSG, Chu VKH, Lam PKS, Morritt D, Maltby L, Brock TCM, Van den Brink PJ, Warne MStJ, Crane M (2007) Comparison of tropical and temperate freshwater animal species’ acute sensitivities to chemicals: implications for deriving safe extrapolation factors. Integr Environ Assess Manag 3:49–67

    Article  CAS  Google Scholar 

  • Leppänen MT, Ristola T, Johnson J, Burton Jr. GA (2006) Applying adult emergence as an endpoint in a post-exposure laboratory test using two midge species (Diptera: Chironomidae). Chemosphere 64:1667–1674

    Article  CAS  Google Scholar 

  • Lewis SE, Silburn DM, Kookana RS, Shaw M (2016) Pesticide behavior, fate, and effects in the tropics: an overview of the current state of knowledge. J Agric Food Chem 64:3917–3924

    Article  CAS  Google Scholar 

  • Liao S, Pan B, Li H, Zhang D, Xing B (2014) Detecting free radicals in biochars and determining their ability to inhibit the germination and growth of corn, wheat and rice seedlings. Environ Sci Technol 48:8581–8587

    Article  CAS  Google Scholar 

  • Marinković M, Verweij RA, Nummerdor GA, Jonker MJ, Kraak MHS, Admiraal W (2011) Life cycle responses of the midge Chironomus riparius to compounds with different modes of action. Environ Sci Technol 45:1645–1651

    Article  CAS  Google Scholar 

  • Martell AE, Smith RM, Motekaitis RJ (1997) Critical stability constants of metal complexes database, Ver 4.0. Standard Reference Database 46. National Institute of Standards and Technology, Gaithersburg, MD, USA

    Google Scholar 

  • Matsuo AYO, Woodin BR, Reddy CM, Val AL, Stegeman JJ (2006) Humic substances and crude oil induce Cytochrome P450 1A expression in the Amazonian fish species Colossoma macropomum (Tambaqui). Environ Sci Technol 40:2851–2858

    Article  CAS  Google Scholar 

  • Matsuo AYO, Val AL (2007) Acclimation to humic substances prevents whole body sodium loss and stimulates branchial calcium uptake capacity in cardinal tetras Paracheirodon axelrodi (Schultz) subjected to extremely low pH. J Fish Biol 70:989–1000

    Article  CAS  Google Scholar 

  • Meems N, Steinberg CEW, Wiegand C (2004) Direct and interacting toxicological effects on the waterflea (Daphnia magna) by natural organic matter, synthetic humic substances and cypermethrin. Sci Total Environ 319:123–136

    Article  CAS  Google Scholar 

  • Meinelt T, Schreckenbach K, Knopf K, Wienke A, Stüber A, Steinberg CEW (2004) Humic substances affect physiological condition and sex ratio of swordtail (Xiphophorus helleri Heckel). Aquat Sci 66:239–245

    Article  Google Scholar 

  • Meinelt T, Paul A, Phan TM, Zwirnmann E, Krüger A, Wienke A, Steinberg CEW (2007) Reduction in vegetative growth of the water mold Saprolegnia parasitica (Coker) by humic substance of different qualities. Aquat Toxicol 83:93–103

    Article  CAS  Google Scholar 

  • Menzel S, Bouchnak R, Menzel R, Steinberg CEW (2011) Dissolved humic substances initiate DNA-methylation in cladocerans. Aquat Toxicol 105:640–642

    Article  CAS  Google Scholar 

  • Müller R, Seeland A, Jagodzinski LS, Diogo JB, Nowak C, Oehlmann J (2011) Simulated climate change conditions unveil the toxic potential of the fungicide pyrimethanil on the midge Chironomus riparius: a multigeneration experiment. Ecol Evol 2:196–210

    Article  Google Scholar 

  • Niemeyer JC, Chelinho S, Sousa JP (2017) Soil ecotoxicology in Latin America: current research and perspectives. Environ Toxicol Chem 36:1795–1810

    Article  CAS  Google Scholar 

  • Novelli A (2005) Estudo limnológico e ecotoxicológico da água e sedimento do rio do Monjolinho - São Carlos (SP) com ênfase nas substâncias de referência cadmio e cobre. University of São Paulo, Brasil, Master thesis, p 212

  • Novelli A, Vieira BH, Cordeiro D, Cappelini LTD, Vieira EM, Espíndola ELG (2012) Lethal effects of abamectin on the aquatic organisms Daphnia similis, Chironomus xanthus and Danio rerio. Chemosphere 86:36–40

    Article  CAS  Google Scholar 

  • [OECD] Organization for Economic Co-operation and Development (2004) Sediment-water chironomid toxicity test using spiked water. OECD guideline for testing of chemicals No 219, Paris, France

    Google Scholar 

  • Oliveira-Filho EC, Lopes RM, Paumgartten FJR (2004) Comparative study on the susceptibility of freshwater species to copper-based pesticides. Chemosphere 56:369–374

    Article  CAS  Google Scholar 

  • Paumen ML, Borgman E, Kraak MHS, Van Gestel CAM, Admiraal W (2013) Life cycle responses of the midge Chironomus riparius to polycyclic aromatic compound exposure. Environ Pollut 152:225–232

    Article  CAS  Google Scholar 

  • Péry ARR, Garric J (2006) Modelling effects of temperature and feeding level on the life cycle of the midge Chironomus riparius: an energy-based modelling approach. Hydrobiologia 553:59–66

    Article  Google Scholar 

  • Rakotondravelo ML, Anderson TD, Charlton RE, Zhu KY (2006) Sublethal effects of three pesticides on larval survivorship, growth, and macromolecule production in the aquatic midge, Chironomus tentans (Diptera: Chironomidae). Arch Environ Contam Toxicol 51:352–359

    Article  CAS  Google Scholar 

  • Richter DD, Babbar LI (1991) Soil diversity in the tropics. Adv Ecol Res 21:315–389

    Article  Google Scholar 

  • Saebelfeld M, Minguez L, Griebel J, Gessner MO, Wolinska J (2017) Humic dissolved organic carbon drives oxidative stress and severe fitness impairments in Daphnia. Aquat Toxicol 182:31–38

    Article  CAS  Google Scholar 

  • Sanchez-Bayo F, Hyne RV (2011) Comparison of environmental risks of pesticides between tropical and nontropical regions. Integr Environ Assess Manag 7:577–586

    Article  CAS  Google Scholar 

  • Santore RC, Di Toro DM, Paquin PR, Allen HE, Meyer JS (2001) Biotic ligand model of the acute toxicity of metals. 2. Application to acute copper toxicity in freshwater fish and Daphnia. Environ Toxicol Chem 20:2397–2402

    Article  CAS  Google Scholar 

  • Santos MAPF, Melão MGG, Lombardi AT (2008) The effects of humic substances on copper toxicity to Ceriodaphnia silvestrii Daday (Crustacea, Cladocera). Ecotoxicology 17:449–454

    Article  CAS  Google Scholar 

  • Schwenk K, Junttila P, Rautio M, Bastiansen F, Knapp J, Dove O, Billiones R, Streit B (2004) Ecological, morphological, and genetic differentiation of Daphnia (Hyalodaphnia) from the Finnish and Russian subarctic. Limnol Oceanogr 49:532–539

    Article  Google Scholar 

  • Servia MJ, Péry ARR, Heydorff M, Garric J, Lagadic L (2006) Effects of copper on energy metabolism and larval development in the midge Chironomus riparius. Ecotoxicology 15:229–240

    Article  CAS  Google Scholar 

  • Steinberg CEW, Kamara S, Prokhotskaya VY, Manusadžianas L, Karasyova T, Timofeyev MA, Zhang J, Paul A, Meinelt T, Farjalla VF, Matsuo AYO, Burnison BK, Menzel R (2006) Dissolved humic substances – ecological driving forces from the individual to the ecosystem level? Freshw Biol 51:1189–1210

    Article  CAS  Google Scholar 

  • Steinberg CEW, Saul N, Pietsch K, Meinelt T, Rienau S, Menzel R (2007) Dissolved humic substances facilitate fish life in extreme aquatic environments and have the potential to extend the lifespan of Caenorhabditis elegans. Ann Environ Sci 1:81–90

    CAS  Google Scholar 

  • Steinberg CE, Meinelt T, Timofeyev MA, Bittner M, Menzel R (2008) Humic substances. Part 2: interactions with organisms. Environ Sci Pollut Res 15:128–135

    Article  Google Scholar 

  • Suffell K (2002) Improving management of nuisance midges (Chironomidae: Diptera) in Perth (Western Australia) wetlands based on their response to temperature and sediment type. Edith Cowan University, Joondalup, Australia, BSc thesis

    Google Scholar 

  • Suhett AL, Steinberg CEW, Santangelo JM, Bozelli RL, Farjalla VF (2011) Natural dissolved humic substances increase the lifespan and promote transgenerational resistance to salt stress in the cladoceran Moina macrocopa. Environ Sci Pollut Res 18:1004–1014

    Article  CAS  Google Scholar 

  • Swift RS (1996) Organic matter characterization. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME (eds) Methods of soil analysis part 3 - chemical methods. Soil science society of America, Madison, WI, USA, pp. 1018–1020

  • Tadini AM, Pantano G, de Toffoli AL, Fontaine B, Spaccini R, Piccolo A, Moreira AB, Bisinoti MC (2015) Off-line TMAH-GC/MS and NMR characterization of humic substances extracted from river sediments of northwestern São Paulo under different soil uses. Sci Total Environ 506–507:234–240

    Article  CAS  Google Scholar 

  • Thit A, Huggins K, Selck H, Baun A (2016) Acute toxicity of copper oxide nanoparticles to Daphnia magna under different test conditions. Toxicol Environ Chem 99:665–679

    Article  CAS  Google Scholar 

  • Trenfield MA, Ng JC, Noller BN, Markich SJ, van Dam RA (2011) Dissolved organic carbon reduces uranium bioavailability and toxicity. 2. Uranium[VI] speciation and toxicity to three tropical freshwater organisms. Environ Sci Technol 45:3082–3089

    Article  CAS  Google Scholar 

  • Trenfield MA, Markich SJ, Ng JC, Noller B, van Dam RA (2012a) Dissolved organic carbon reduces the toxicity of aluminum to three tropical freshwater organisms. Environ Toxicol Chem 31:427–436

    Article  CAS  Google Scholar 

  • Trenfield MA, Ng JC, Noller B, Markich SJ, van Dam RA (2012b) Dissolved organic carbon reduces uranium toxicity to the unicellular eukaryote Euglena gracilis. Ecotoxicology 21:1013–1023

    Article  CAS  Google Scholar 

  • Tundisi JG, Matsumura T (2011) Limnology. CRC Press, Boca Raton, FL

    Google Scholar 

  • Vaz Jr. S, Lopes WT, Martin-Neto L (2015) Study of molecular interactions between humic acid from Brazilian soil and the antibiotic oxytetracycline. Environ Technol Innov 4:260–267

    Article  Google Scholar 

  • Watanabe A, Moroi K, Sato H, Tsutsuki K, Maie N, Melling L, Jaffé R (2012) Contributions of humic substances to the dissolved organic carbon pool in wetlands from different climates. Chemosphere 88:1265–1268

    Article  CAS  Google Scholar 

  • Wentsel R, Mclntosh A, Atchison G (1978) Evidence of resistance to metals in larvae of the midge Chironomus tentans in a metal contaminated lake. B Environ Contam Toxicol 20:451–455

    Article  CAS  Google Scholar 

  • Wetzel RG (2001) Limnology. Lake and River Ecosystems, 3rd ed. Academic Press, San Diego, CA, USA

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Brazilian government through the Special Visiting Researcher program (MEC/MCTI/CAPES/CNPq/FAPs reference 402392/2013-2) and the National Council for Scientific and Technological Development (CNPq) CT-Hidro process number 142481/2004-1. We also acknowledge the support from the Portuguese government (Foundation for Science and Technology - FCT) through a postdoc grant for the last author (SFRH/BPD/109199/2015) and the research unit CENSE (UID/AMB/04085/2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michiel A. Daam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbosa, D.S., Barbosa, D.S., Espíndola, E.L.G. et al. The direct effects of a tropical natural humic substance to three aquatic species and its influence on their sensitivity to copper. Ecotoxicology 28, 550–558 (2019). https://doi.org/10.1007/s10646-019-02031-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-019-02031-3

Keywords

Navigation