Skip to main content
Log in

Functional evolution of Ets in echinoderms with focus on the evolution of echinoderm larval skeletons

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

Convergent evolution of echinoderm pluteus larva was examined from the standpoint of functional evolution of a transcription factor Ets1/2. In sea urchins, Ets1/2 plays a central role in the differentiation of larval skeletogenic mesenchyme cells. In addition, Ets1/2 is suggested to be involved in adult skeletogenesis. Conversely, in starfish, although no skeletogenic cells differentiate during larval development, Ets1/2 is also expressed in the larval mesoderm. Here, we confirmed that the starfish Ets1/2 is indispensable for the differentiation of the larval mesoderm. This result led us to assume that, in the common ancestors of echinoderms, Ets1/2 activates the transcription of distinct gene sets, one for the differentiation of the larval mesoderm and the other for the development of the adult skeleton. Thus, the acquisition of the larval skeleton involved target switching of Ets1/2. Specifically, in the sea urchin lineage, Ets1/2 activated a downstream target gene set for skeletogenesis during larval development in addition to a mesoderm target set. We examined whether this heterochronic activation of the skeletogenic target set was achieved by the molecular evolution of the Ets1/2 transcription factor itself. We tested whether starfish Ets1/2 induced skeletogenesis when injected into sea urchin eggs. We found that, in addition to ectopic induction of mesenchyme cells, starfish Ets1/2 can activate some parts of the skeletogenic pathway in these mesenchyme cells. Thus, we suggest that the nature of the transcription factor Ets1/2 did not change, but rather that some unidentified co-factor(s) for Ets1/2 may distinguish between targets for the larval mesoderm and for skeletogenesis. Identification of the co-factor(s) will be key to understanding the molecular evolution underlying the evolution of the pluteus larvae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amore G, Davidson EH (2006) cis-Regulatory control of cyclophilin, a member of the ETS-DRI skeletogenic gene battery in the sea urchin embryo. Dev Biol 293:555–564

    Article  CAS  PubMed  Google Scholar 

  • Amore G, Yavrouian RG, Peterson KJ, Ransick A, McClay DR, Davidson EH (2003) Spdeadringer, a sea urchin embryo gene required separately in skeletogenic and oral ectoderm gene regulatory networks. Dev Biol 261:55–81

    Article  CAS  PubMed  Google Scholar 

  • Armstrong N, Hardin J, McClay DR (1993) Cell-cell interactions regulate skeleton formation in the sea urchin embryo. Development 119:833–840

    CAS  PubMed  Google Scholar 

  • Di Bernardo M, Castagnetti S, Bellomonte D, Oliveri P, Melfi R, Palla F, Spinelli G (1999) Spatially restricted expression of PlOtp, a Paracentrotus lividus orthopedia-related homeobox gene, is correlated with oral ectodermal patterning and skeletal morphogenesis in late-cleavage sea urchin embryos. Development 126:2171–2179

    PubMed  Google Scholar 

  • Duloquin L, Lhomon G, Gache C (2007) Localized VEGF signaling from ectoderm to mesenchyme cells controls morphogenesis of the sea urchin embryo skeleton. Development 134:2293–2302

    Article  CAS  PubMed  Google Scholar 

  • Ettensohn CA (2009) Lessons from a gene regulatory network: echinoderm skeletogenesis provides insights into evolution, plasticity and morphogenesis. Development 136:11–21

    Article  CAS  PubMed  Google Scholar 

  • Galant R, Carroll SB (2002) Evolution of a transcriptional repression domain in an insect Hox protein. Nature 415:910–913

    Article  CAS  PubMed  Google Scholar 

  • Gao F, Davidson EH (2008) Transfer of a large gene regulatory apparatus to a new developmental address in echinoid evolution. Proc Natl Acad Sci USA 105:6091–6096

    Article  CAS  PubMed  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hinman V, Davidson EH (2007) Evolutionary plasticity of developmental gene regulatory network architecture. Proc Natl Acad Sci USA 104:19404–19409

    Article  CAS  PubMed  Google Scholar 

  • Hinman V, Yankura KA, McCauley BS (2009) Evolution of gene regulatory network architectures: examples of subcircuit conservation and plasticity between classes of echinoderms. Biochem Biophys Acta 1789:326–332

    CAS  PubMed  Google Scholar 

  • Janies D (2001) Phylogenetic relationships of extant echinoderm classes. Can J Zool 79:1232–1250

    Article  CAS  Google Scholar 

  • Keane TM, Creevey CJ, Pentony MM, Naughton TJ, McInerney JO (2006) Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol Biol 6:29

    Article  PubMed  Google Scholar 

  • Kinoshita T, Okazaki K (1984) In vitro study on morphogenesis of sea urchin larval spicule: adhesiveness of cells. Zool Sci 1:433–443

    Google Scholar 

  • Kitajima T, Urakami H (2000) Differential distribution of spicule matrix proteins in the sea urchin embryo skeleton. Dev Growth Differ 42:295–306

    Article  CAS  PubMed  Google Scholar 

  • Kurokawa D, Kitajima T, Mitsunaga-Nakatsubo K, Amemiya S, Shimada H, Akasaka K (1999) HpEts, an ets-related transcription factor implicated in primary mesenchyme cell differentiation in the sea urchin embryo. Mech Dev 80:41–52

    Article  CAS  PubMed  Google Scholar 

  • Lemaire P, Garrett N, Gurdon JB (1995) Expression cloning of Siamois, a Xenopus homeobox gene expressed in dorsal vegetal cells of blastulae and able to induce a complete secondary axis. Cell 81:85–94

    Article  CAS  PubMed  Google Scholar 

  • Littlewood DTJ, Smith AB, Clough KA, Emson RH (1997) The interrelationships of the echinoderm classes: morphological and molecular evidence. Biol J Linn Soc Lond 61:409–438

    Article  Google Scholar 

  • Lynch VJ, Tanzer A, Wang Y, Leung FC, Gellersen B, Emera D, Wagner GP (2008) Adaptive changes in the transcription factor HoxA-11 are essential for the evolution of pregnancy in mammals. Proc Natl Acad Sci USA 105:14928–14933

    Article  CAS  PubMed  Google Scholar 

  • Maruyama YK (1980) Artificial induction of oocyte maturation and development in the sea cucumbers Holothuria leucospilota and Holothuria pardalis. Biol Bull 158:339–348

    Article  CAS  Google Scholar 

  • McCauley BS, Weideman EP, Hinman VF (2010) A conserved gene regulatory network subcircuit drives different developmental fates in the vegetal pole of highly divergent echinoderm embryos. Dev Biol 340:200–208

    Article  CAS  PubMed  Google Scholar 

  • Paul CRC, Smith AB (1984) The early radiation and phylogeny of echinoderms. Biol Rev 59:443–481

    Article  Google Scholar 

  • Ronshaugen M, McGinnis N, McGinnis W (2002) Hox protein mutation and macroevolution of the insect body plan. Nature 415:914–917

    Article  PubMed  Google Scholar 

  • Röttinger E, Besnardea L, Lepage T (2003) A Raf/MEK/ERK signaling pathway is required for development of the sea urchin embryo micromere lineage through phosphorylation of the transcription factor Ets. Development 131:1075–1087

    Article  Google Scholar 

  • Röttinger E, Saudemont A, Duboc V, Besnardeau L, McClay D, Lepage T (2008) FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis and regulate gastrulation during sea urchin development. Development 135:353–365

    Article  PubMed  Google Scholar 

  • Sharma T, Ettensohn CA (2010) Activation of the skeletogenic gene regulatory netwrok in the early sea urchin embryo. Development 137:1149–1157

    Article  CAS  PubMed  Google Scholar 

  • Shoguchi E, Satoh N, Marukyama YK (2000) A starfish homolog of mouse T-brain-1 is expressed in the archenteron of Asterina pectinifera embryos: Possible involvement of two T-box genes in starfish gastrulation. Dev Growth Differ 42:61–68

    Article  CAS  PubMed  Google Scholar 

  • Smith J, Davidson EH (2008) A new method, using cis-regulatory control, for blocking embryonic gene expression. Dev Biol 318:360–365

    Article  CAS  PubMed  Google Scholar 

  • Sweet H, Amemiya S, Ransick A, Minokawa T, McClay DR, Wikramanayake A, Kuraishi R, Kiyomoto M, Nishida H, Henry J (2004) Blastomere isolation and transplantation. In: Ettensohn CA, Wessel GM, Wray GA (eds) Development of sea urchins, ascidianas, and other invertebrate deuterostomes: experimental approaches. Elsevier Academic Press, San Diego

    Google Scholar 

  • Wada H, Satoh N (1994) Phylogenetic relationships among extant classes of echinoderms, as inferred from sequences of 18S rDNA, coincide with relationships deduced from the fossil records. J Mol Evol 38:41–49

    Article  CAS  PubMed  Google Scholar 

  • Yajima M (2007) A switch in the cellular basis of skeletogenesis in late-stage sea urchin larvae. Dev Biol 307:272–281

    Article  CAS  PubMed  Google Scholar 

  • Yamashita M (1985) Embryonic development of the brittle-star Amphipholis kochii in laboratory culture. Biol Bull 169:131–142

    Article  Google Scholar 

  • Yasuo H, Satoh N (1994) An ascidian homolog of the mouse Brachyury (T) gene is expressed exclusively in notochord cells at fate restricted stage. Dev Growth Differ 36:9–18

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Kyoko Uchi, Hidekazu Kuwayama, and Hideko Urushihara for their technical assistance of QRT-PCR. We also thank students in Komatsu lab (Toyama University) for their help in collecting brittle stars. This work is supported by Grants-in-Aid for Scientific Research (B) 21370105 to HW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Wada.

Additional information

Communicated by H. Nishida

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koga, H., Matsubara, M., Fujitani, H. et al. Functional evolution of Ets in echinoderms with focus on the evolution of echinoderm larval skeletons. Dev Genes Evol 220, 107–115 (2010). https://doi.org/10.1007/s00427-010-0333-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-010-0333-5

Keywords

Navigation