Skip to main content
Log in

Use of 3,3′-diaminobenzidine as a biochemical electron donor for studies on terminal cytochrome oxidase activity inAzotobacter vinelandii

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Azotobacter vinelandii cells readily oxidize the dye 3,3′-diaminobenzidine (DAB), which has been previously used as an electron donor for studies on the mitochondrial cytochromec oxidase reaction. The DAB oxidase activity inA. vinelandii cells was 10-fold lower than that noted for theN,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD) oxidase reaction, which is commonly used to measure terminal oxidase activity both in bacteria and mitochondria. Analyses of cell-free extracts show that DAB oxidase activity is concentrated almost exclusively in theA. vinelandii membrane fractions, most notably in the “R3” electron transport particle (ETP). Oxidation studies, which employed both whole cells and the ETP fraction, show DAB oxidase activity to be markedly sensitive to KCN, NaN3, and NH2OH. A manometric assay system was developed which readily measured DAB oxidase activity in bacteria. Preliminary studies indicate that ascorbate-DAB oxidation inAzotobacter vinelandii measures terminal cytochrome oxidase activity in a manner similar to the TMPD oxidase reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Ackrell, B. A. C., Jones, C. W. 1971. The respiratory system ofAzotobacter vinelandii. I. Properties of phosphorylating respiratory membranes. European Journal of Biochemistry20:22–28.

    Article  PubMed  CAS  Google Scholar 

  2. Ben-Hayyim, G. Z., Drechsler, J. G., Neumann, J. 1975. Diaminobenzidine, an electron donor to photosystem 1 and to photosystem 2 in chloroplasts. European Journal of Biochemistry52:135–141.

    Article  PubMed  CAS  Google Scholar 

  3. Burk, D. 1930. The influence of oxygen gas upon the organic catalysis of nitrogen fixation byAzotobacter. Journal of Physical Chemistry34:1195–1209.

    Article  CAS  Google Scholar 

  4. Cammer, W., Moore, C. L. 1973. Oxidation of 3,3′-diaminobenzidine by rat liver mitochondria. Biochemistry12:2502–2509.

    Article  PubMed  CAS  Google Scholar 

  5. Chua, N. H. 1972. Photooxidation of 3,3′-diaminobenzidine by blue-green algae andChlamydomonas reinhardii. Biochimica et Biophysica Acta267:179–189.

    Article  PubMed  CAS  Google Scholar 

  6. Erickson, S. K., Diehl, H. 1973. The terminal oxidases ofAzotobacter vinelandii. Biochemical and Biophysical Research Communications50:321–327.

    Article  PubMed  CAS  Google Scholar 

  7. Jones, C. W., Redfearn, E. R. 1967. The cytochrome system ofAzotobacter vinelandii. Biochimica et Biophysica Acta143:340–353.

    Article  PubMed  CAS  Google Scholar 

  8. Jones, M. V. 1975. Physiological role for the membrane bound ascorbate-TMPD oxidase inPseudomonas putida. Archives of Microbiology102:275–279.

    Article  PubMed  CAS  Google Scholar 

  9. Jurtshuk, P., Jr., Aston, P. R., Old, L. 1967. Enzymatic oxidation of tetramethyl-p-phenylenediamine andp-phenylenediamine by the electron transport particulate fraction ofAzotobacter vinelandii. Journal of Bacteriology93:1069–1078.

    PubMed  CAS  Google Scholar 

  10. Jurtshuk, P., Jr., McQuitty, D.N. 1976. Survey of oxidase-positive and-negative bacteria using a quantitative Kovacs oxidase test. International Journal of Systematic Bacteriology26:127–135.

    Google Scholar 

  11. Jurtshuk, P., Jr., McQuitty, D. N. 1976. use of a quantitative oxidase test for characterizing oxidative metabolism in bacteria. Applied and Environmental Microbiology31:668–679.

    PubMed  CAS  Google Scholar 

  12. Jurtshuk, P., Jr., Marcucci, O. M., McQuitty, D. N. 1975. Tetramethyl-p-phenylenediamine oxidase reaction inAzotobacter vinelandii. Applied Microbiology30:951–958.

    PubMed  CAS  Google Scholar 

  13. Jurtshuk, P., Jr., May, A. K., Pope, L. M., Aston, P. R. 1969. Comparative studies on succinate and terminal oxidase activity in microbial and mammalian electron-transport systems. Canadian Journal of Microbiology15:797–807.

    Article  PubMed  CAS  Google Scholar 

  14. Jurtshuk, P., Jr., Milligan, T. W. 1974. Quantitation of the tetramethyl-p-phenylenediamine oxidase reaction inNeisseria species. Applied Microbiology28:1079–1081.

    PubMed  CAS  Google Scholar 

  15. Jurtshuk, P., Jr., Mueller, T. J., Acord, W. C. 1975. Bacterial terminal oxidases. CRC Critical Reviews in Microbiology3:399–468.

    PubMed  CAS  Google Scholar 

  16. Jurtshuk, P., Jr., Mueller, T. J., McQuitty, D. N., Riley, W. H. 1978. The cytochrome oxidase reaction inAzotobacter vinelandii and other bacteria, pp. 99–121. In: Degn, H., Lloyd, D., Hill, G. C. (eds.), Functions of alternative terminal oxidases, vol. 49. Oxford: Pergamon Press.

    Google Scholar 

  17. Jurtshuk, P., Jr., Old, L. 1968. Cytochromec oxidation by the electron transport fraction ofAzotobacter vinelandii. Journal of Bacteriology95:1790–1797.

    PubMed  CAS  Google Scholar 

  18. Postgate, J. 1971. Fixation by free-living microbes: Physiology, pp. 161–190. In: Postgate, J. R. (ed.), The chemistry and biochemistry of nitrogen fixation. London, New York: Plenum Press.

    Google Scholar 

  19. Reith, A., Schuler, B. 1972. Demonstration of cytochrome oxidase activity with diaminobenzidine. Biochemical and electron microscopic study. Journal of Histochemistry and Cytochemistry20:581–587.

    CAS  Google Scholar 

  20. Sekuzu, I., Takemori, S., Orii, Y., Okumuki, K. 1960. Studies on cytochromea. IV. Reaction of cytochromea with cytochromesc andc1. Biochimica et Biophysica Acta37:64–71.

    Article  PubMed  CAS  Google Scholar 

  21. Seligman, A. M., Karnovsky, M. J., Wasserkrug, H. L., Hanker, J. S. 1968. Nondroplet ultrastructural demonstration of cytochrome oxidase activity with a polymerizing osmiophilic reagent, diaminobenzidine (DAB). Journal of Cell Biology38:1–14.

    Article  PubMed  CAS  Google Scholar 

  22. Tyler, D. D., Estabrook, R. W. 1965. Electron and energy requirements for cytochromeb reduction during oxidation of tetramethyl-p-phenylenediamine. Biochemical and Biophysical Research Communications18:264–269.

    Article  CAS  Google Scholar 

  23. Yang, T. Y., Jurtshuk, P., Jr. 1978. Purification and characterization of cytochromeo fromAzotobacter vinelandii. Biochimica et Biophysica Acta502:543–548.

    Article  PubMed  CAS  Google Scholar 

  24. Yang, T. Y., Jurtshuk, P., Jr. 1978. Studies on the red oxidase (cytochromeo) ofAzotobacter vinelandii. Biochemical and Biophysical Research Communications81:1032–1039.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jurtshuk, P., McQuitty, D.N. & Riley, W.H. Use of 3,3′-diaminobenzidine as a biochemical electron donor for studies on terminal cytochrome oxidase activity inAzotobacter vinelandii . Current Microbiology 2, 349–354 (1979). https://doi.org/10.1007/BF02602874

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02602874

Keywords

Navigation