Skip to main content
Log in

Perovskite-like fluorides and oxyfluorides: Phase transitions and caloric effects

  • Dedicated to the Memory of K.S. Aleksandrov
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

An analysis of the effect that chemical and hydrostatic pressures have on the thermodynamic properties of perovskite-like fluorine-oxygen compounds A 2 AMeO x F6 − x has revealed that materials under-going order-disorder transitions and having significant external-pressure compliance have the highest caloric efficiency. Some of the fluorides and oxyfluorides under study can be considered promising solid coolants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. N. Flerov, M. V. Gorev, K. S. Aleksandrov, A. Tressaud, et al., Mater. Sci. Eng. R24, 81 (1998).

    Google Scholar 

  2. I. N. Flerov, M. V. Gorev, K. S. Aleksandrov, A. Tressaud, and V. D. Fokina, Kristallografiya 49, 107 (2004) [Crystallogr. Rep. 49, 100 (2004)].

    ADS  Google Scholar 

  3. P. A. Maggard, T. S. Nault, Ch. L. Stern, and K. R. Poeppelmeier, J. Solid State Chem. 175, 27 (2003).

    Article  ADS  Google Scholar 

  4. G. Pausewang and W. Rüdorff, Z. Anorg, Allgem. Chem. 364, 69 (1969).

    Article  Google Scholar 

  5. K. Dehnicke, G. Pausewang, and W. Rüdorff, Z. Anorg, Allgem. Chem. 366, 64 (1969).

    Article  Google Scholar 

  6. J. Ravez, G. Peraudeau, H. Arend, S. C. Abrahams, and P. Hagenmuller 26, 767 (1980).

  7. J. Ravez, J. Phys. III France. 7, 1129 (1997).

    Article  Google Scholar 

  8. A. M. Tishin and Y. I. Spichkin, The Magnetocaloric Effect and Its Applications, Series in Condensed Matter Physics (Institute of Physics Publ., Bristol, Philadelphia, 2003).

    Google Scholar 

  9. Yu. V. Sinyavskii, Khim. Neft. Mash., No. 6, 5 (1995).

  10. A. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore, and N. D. Mathur, Science 311, 1270 (2006).

    Article  ADS  Google Scholar 

  11. I. N. Flerov, M. V. Gorev, V. D. Fokina, A. F. Bovina, and N. M. Laptash, Fiz. Tverd. Tela 46, 888 (2004).

    Google Scholar 

  12. I. N. Flerov, M. V. Gorev, V. D. Fokina, et al., Fiz. Tverd. Tela 49, 136 (2007).

    Google Scholar 

  13. I. N. Flerov, V. D. Fokina, A. F. Bovina, et al., Fiz. Tverd. Tela 50, 515 (2008).

    Google Scholar 

  14. V. D. Fokina, I. N. Flerov, M. V. Gorev, M. S. Molokeev, et al., Ferroelectrics 347, 60 (2007).

    Article  Google Scholar 

  15. M. V. Gorev, I. N. Flerov, A. Tressaud, A. Zaitsev, et al., Solid State Sci. 4, 15 (2002).

    Article  ADS  Google Scholar 

  16. I. N. Flerov, M. V. Gorev, M. L. Afanas’ev, and T. V. Ushakova, Fiz. Tverd. Tela 43, 2204 (2007).

    Google Scholar 

  17. K. Moriya, T. Matsuo, H. Suga, and S. Seki, Bull. Chem. Soc. Jpn. 50, 1920 (1977).

    Article  Google Scholar 

  18. I. N. Flerov, M. V. Gorev, V. N. Voronov, and A. F. Bovina, Fiz. Tverd. Tela 38, 2203 (1996).

    Google Scholar 

  19. E. J. Zuniga, A. Tresssaud, and J. Darriet, J. Solid State Chem., 3607 (2006).

  20. V. D. Fokina, I. N. Flerov, M. S. Molokeev, E. I. Pogorel’tsev, et al., Fiz. Tverd. Tela 50, 2084 (2008).

    Google Scholar 

  21. A. A. Udovenko, N. M. Laptash, and I. G. Maskennikova, J. Fliorine Chem. 124, 5 (2003).

    Article  Google Scholar 

  22. A. A. Udovenko and N. M. Laptash, Acta Crystallogr. B 64, 645 (2008).

    Article  Google Scholar 

  23. M. Fouad, J. P. Chaminade, J. Ravez, and Hagenmüller, Rev. Chim. Miner. 24, 1 (1987).

    Google Scholar 

  24. T. Strässle, A. Furrer, Z. Hossain, and Ch. Geibel, Phys. Rev. B 67, 054 407 (2003).

    Article  Google Scholar 

  25. M. P. Annaorazov, S. A. Nikitin, A. L. Tyurin, et al., J. Appl. Phys. 79, 1689 (1996).

    Article  ADS  Google Scholar 

  26. L. G. de Medeiros, N. A. de Oliveira, and A. Troper, J. Appl. Phys. 103, 113 909 (2008).

    Google Scholar 

  27. V. G. Vaks, Introduction to the Microscopic Theory of Ferroelectrics (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  28. A. Tresssaud, S. Khaïroun, L. Rabardel, et al., Phys. Stat. Solids A, 407 (1986).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Flerov.

Additional information

Original Russian Text © I.N. Flerov, M.V. Gorev, A. Tressaud, N.M. Laptash, 2011, published in Kristallografiya, 2011, Vol. 56, No. 1, pp. 13–21.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flerov, I.N., Gorev, M.V., Tressaud, A. et al. Perovskite-like fluorides and oxyfluorides: Phase transitions and caloric effects. Crystallogr. Rep. 56, 9–17 (2011). https://doi.org/10.1134/S106377451101010X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377451101010X

Keywords

Navigation