Skip to main content

Advertisement

Log in

Differential stability of photosynthetic membranes and fatty acid composition at elevated temperature in Symbiodinium

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Coral reefs are threatened by increasing surface seawater temperatures resulting from climate change. Reef-building corals symbiotic with dinoflagellates in the genus Symbiodinium experience dramatic reductions in algal densities when exposed to temperatures above the long-term local summer average, leading to a phenomenon called coral bleaching. Although the temperature-dependent loss in photosynthetic function of the algal symbionts has been widely recognized as one of the early events leading to coral bleaching, there is considerable debate regarding the actual damage site. We have tested the relative thermal stability and composition of membranes in Symbiodinium exposed to high temperature. Our results show that melting curves of photosynthetic membranes from different symbiotic dinoflagellates substantiate a species-specific sensitivity to high temperature, while variations in fatty acid composition under high temperature rather suggest a complex process in which various modifications in lipid composition may be involved. Our results do not support the role of unsaturation of fatty acids of the thylakoid membrane as being mechanistically involved in bleaching nor as being a dependable tool for the diagnosis of thermal susceptibility of symbiotic reef corals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Aminaka R, Taira Y, Kashino Y, Koike H, Satoh K (2006) Acclimation to the growth temperature and thermosensitivity of Photosystem II in a mesophilic cyanobacterium, Synechocystis sp. PCC6803. Plant Cell Physiol 47:1612–1621

    Article  CAS  PubMed  Google Scholar 

  • Berry J, Bjorkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31:491–543

    Article  Google Scholar 

  • Bishop DG, Kenrick JK (1980) Fatty acids composition of symbiotic zooxanthella in relation to their hosts. Lipids 15:799–804

    Article  CAS  Google Scholar 

  • Blank RJ (1987) Cell architecture of the dinoflagellate Symbiodinium sp. inhabiting the Hawaiian coral Montipora verrucosa. Mar Biol 94:143–155

    Article  Google Scholar 

  • Brasseur R, Pillot T, Lins L, Vandekerchove J, Rosseneu M (1997) Peptides in membranes: tipping the balance of membrane stability. Trends Biochem Sci 22:167–171

    Article  CAS  PubMed  Google Scholar 

  • Coles SL, Jokiel PL (1978) Synergistic effects of temperature, salinity and light on the hermatypic coral Montipora verrucosa. Mar Biol 49:187–195

    Article  Google Scholar 

  • Enríquez S, Méndez ER, Iglesias-Prieto R (2005) Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnol Oceanogr 50:1025–1032

    Article  Google Scholar 

  • Falcone DL, Ogas JP, Somerville CR (2004) Regulation of membrane fatty acid composition by temperature in mutants of Arabidopsis with alterations in membrane lipid composition. BMC Plant Biol 4:17–32

    Article  PubMed  Google Scholar 

  • Fitt WK, Brown BE, Warner ME, Dunne RP (2001) Coral bleaching: interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20:51–65

    Article  Google Scholar 

  • Gibson S, Arondel V, Iba K, Somerville C (1994) Cloning of a temperature-regulated gene encoding a chloroplast omega-3 desaturase from Arabidopsis thaliana. Plant Physiol 106:1615–1621

    Article  CAS  PubMed  Google Scholar 

  • Gombos Z, Wada H, Hideg E, Murata N (1994) The unsaturation of membrane lipids stabilizes photosynthesis against heat stress. Plant Physiol 104:563–567

    CAS  PubMed  Google Scholar 

  • Guschina IA, Hardwood JL (2006) Mechanisms of temperature adaptation in poikilotherms. FEBS Lett 580:5477–5483

    Article  CAS  PubMed  Google Scholar 

  • Hartmann MA (1998) Plant sterols and the membrane environment. Trends Biochem Sci 3:170–175

    Google Scholar 

  • Henderson RJ, Mackinlay EE, Hodgson P, Harwood JL (1990) Differential effects of the substituted pyridazinone herbicide Sandoz 9785 on lipid composition and biosynthesis in photosynthetic and non-photosynthetic marine microalgae. J Exp Bot 41:729–736

    Article  CAS  Google Scholar 

  • Hill R, Ulstrup KE, Ralph PJ (2009) Temperature induced changes in thylakoid membrane thermostability of cultured, freshly isolated, and expelled zooxanthellae from scleractinian corals. Bull Mar Sci 85:223–244

    Google Scholar 

  • Hoegh-Guldberg O (1999) Climate change: coral bleaching and the future of the world’s coral reefs. Mar Freshw Res 50:839–866

    Article  Google Scholar 

  • Hugly S, Kunst L, Browse J, Somerville C (1989) Enhanced thermal tolerance of photosynthesis and altered chloroplast ultrastructure in a mutant of Arabidopsis deficient in lipid desaturation. Plant Physiol 90:1134–1142

    Article  CAS  PubMed  Google Scholar 

  • Iglesias-Prieto R, Matta JL, Robins WA, Trench RK (1992) Photosynthetic response to elevated temperature in the symbiotic dinoflagellate Symbiodinium microadriaticum in culture. Proc Natl Acad Sci USA 89:10302–10305

    Article  CAS  PubMed  Google Scholar 

  • Iglesias-Prieto R, Govind NS, Trench RK (1993) Isolation and characterization of three membrane-bound chlorophyll-protein complexes from four dinoflagellate species. Phil Tran R Soc Lond B 340:381–392

    Article  CAS  Google Scholar 

  • Inoue N, Taira Y, Emi T, Yamare Y, Kshino Y, Koike H, Satoh K (2001) Acclimation to the growth temperature and the high-temperature effects on photosystem II and plasma membranes in a mesophyllic cyanobacterium Synechocystis sp. PCC6083. Plant Cell Physiol 42:1140–1148

    Article  CAS  PubMed  Google Scholar 

  • Jones RJ, Hoegh-Guldberg O, Larkum AWD, Schreiber U (1998) Temperature-induced bleaching of corals begins with impairment of the CO2 fixation mechanism in zooxanthellae. Plant Cell Environ 21:1219–1230

    Article  CAS  Google Scholar 

  • LaJeunesse T (2001) Investigating the biodiversity, ecology and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: in search of a species level marker. J Phycol 37:866–880

    Article  CAS  Google Scholar 

  • Leblond JD, Chapman PJ (2000) Lipid class distribution of highly unsaturated long chain fatty acids in marine dinoflagellates. J Phycol 36:1103–1108

    Article  CAS  Google Scholar 

  • McKersie BD, Thompson JE (1979) Influence of plant sterols on the phase properties of phospholipids bilayers. Plant Physiol 63:802–805

    Article  CAS  PubMed  Google Scholar 

  • Murakami Y, Tsuyama M, Kobayashi Y, Kodama H, Iba K (2000) Trienoic fatty acids and plant tolerance of high temperature. Science 287:476–479

    Article  CAS  PubMed  Google Scholar 

  • Papina M, Meziane T, vanWoesik R (2003) Symbiotic zooxanthellae provide the host-coral Montipora digitata with polyunsaturated fatty acids. Comp Biochem Physiol Part B 135:533–537

    Article  CAS  Google Scholar 

  • Raison JK, Roberts JKM, Berry JA (1982) Correlations between the thermal stability of chloroplast (thylakoid) membranes and the composition and fluidity of their polar lipids upon acclimation of the higher plant Nerium oleander, to growth temperature. Biochim Biophys Acta 688:218–228

    Article  CAS  Google Scholar 

  • Robinson JD, Warner ME (2006) Differential impacts of photoacclimation and thermal stress on the photobiology of four different phylotypes of Symbiodinium (Pyrrophyta). J Phycol 42:568–579

    Article  Google Scholar 

  • Sakamoto T, Bryant DA (1997) Temperature-regulated mRNA accumulation and stabilization for fatty acid desaturase genes in the cyanobacterium Synechoccocus sp. strain PCC 7002. Mol Microbiol 23:1281–1292

    Article  CAS  PubMed  Google Scholar 

  • Sato N, Sonoike K, Kawaguchi A, Tsuzuki M (1996) Contribution of lowered unsaturation levels of chloroplast lipids to high temperature tolerance of photosynthesis in Chlamydomonas reinhardtii. J Photochem Photobiol 36:333–337

    Article  CAS  Google Scholar 

  • Schreiber U, Armond PA (1978) Heat induced changes of chlorophyll fluorescence in isolated chloroplasts and related heat-damage at the pigment level. Biochim Biophys Acta 502:138–151

    Article  CAS  PubMed  Google Scholar 

  • Somerville C, Browse J (1996) Dissecting desaturation: plants prove advantageous. Trends Cell Biol 6:148–153

    Article  CAS  PubMed  Google Scholar 

  • Sotka EE, Thacker RW (2005) Do some corals like it hot? Trends Ecol Evol 20:59–62

    Article  PubMed  Google Scholar 

  • Takahashi S, Whitney S, Itoh S, Maruyama T, Badger M (2007) Heat stress causes inhibition of the de novo synthesis of antennae proteins and photobleaching in cultured Symbiodinium. Proc Natl Acad Sci USA 105:3208–4203

    Google Scholar 

  • Tchernov D, Gorbunov MY, de Vargas C, Yadav SN, Milligan AJ, Häggblom M, Falkowski PG (2004) Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc Natl Acad Sci USA 101:13531–13535

    Article  CAS  PubMed  Google Scholar 

  • Wada H, Gombos Z, Murata N (1994) Contribution of membrane lipids to the ability of the photosynthetic machinery to tolerate temperature stress. Proc Natl Acad Sci USA 91:4273–4277

    Article  CAS  PubMed  Google Scholar 

  • Warner ME, Fitt WK, Schmidt GW (1999) Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc Natl Acad Sci USA 96:8007–8012

    Article  CAS  PubMed  Google Scholar 

  • Zhukova NV, Titlyanov EA (2003) Fatty acid variations in symbiotic dinoflagellates from Okinawan corals. Phytochem 62:191–195

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Prof. Robert K. Trench for fruitful discussions. ED-A wishes to recognize a scholarship awarded for her Master studies by the Consejo Nacional de Ciencia y Tecnología (CONACyT), México. This study was supported by the Global Environmental Facility through the Coral Reef Targeted Research Program (http://www.gefcoral.org).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. E. Thomé.

Additional information

Communicated by Biology Editor Dr. Mark Warner

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 174 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díaz-Almeyda, E., Thomé, P.E., El Hafidi, M. et al. Differential stability of photosynthetic membranes and fatty acid composition at elevated temperature in Symbiodinium . Coral Reefs 30, 217–225 (2011). https://doi.org/10.1007/s00338-010-0691-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-010-0691-5

Keywords

Navigation