Skip to main content

Advertisement

Log in

Environmental controls on daytime net community calcification on a Red Sea reef flat

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Coral growth and carbonate accumulation form the foundation of the coral reef ecosystem. Changes in environmental conditions due to coastal development, climate change, and ocean acidification may pose a threat to net carbonate production in the near future. Controlled laboratory studies demonstrate that calcification by corals and coralline algae is sensitive to changes in aragonite saturation state (Ωa), as well as temperature, light, and nutrition. Studies also show that the dissolution rate of carbonate substrates is impacted by changes in carbonate chemistry. The sensitivity of coral reefs to these parameters must be confirmed and quantified in the natural environment in order to predict how coral reefs will respond to local and global changes, particularly ocean acidification. We estimated the daytime hourly net community metabolic rates, both net community calcification (NCC) and net community productivity (NCP), at Sheltered Reef, an offshore platform reef in the central Red Sea. Average NCC was 8 ± 3 mmol m−2 h−1 in December 2010 and 11 ± 1 mmol m−2 h−1 in May 2011, and NCP was 21 ± 7 mmol m−2 h−1 in December 2010 and 44 ± 4 mmol m−2 h−1 in May 2011. We also monitored a suite of physical and chemical properties to help relate the rates at Sheltered Reef to published rates from other sites. While previous research shows that short-term field studies investigating the NCC–Ωa relationship have differing results due to confounding factors, it is important to continue estimating NCC in different places, seasons, and years, in order to monitor changes in NCC versus Ω in space and time, and to ultimately resolve a broader understanding of this relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Notes

  1. Normalization to constant salinity (Normalized Alkalinity = Alkalinity × 40/Salinity) removes the effects of evaporation and precipitation on alkalinity and DIC. This should not make a large difference in most reef settings, but we chose to do this because we were confident in our salinity measurements (accuracy = 0.001 PSU, resolution 0.0002 PSU), so there was little danger of confounding the results with faulty salinity measurements.

References

  • Adey WH (1998) Coral reefs: algal structured and mediated ecosystems in shallow, turbulent, alkaline waters. J Phycol 34:393–406

    Article  Google Scholar 

  • Albright R, Langdon C, Anthony K (2013) Dynamics of seawater carbonate chemistry, production, and calcification of a coral reef flat, central Great Barrier Reef. Biogeosci Discuss 10:7641–7676

    Article  Google Scholar 

  • Allemand D, Ferrier-Pages C, Furla P, Houlbreque F, Puverel S, Reynaud S, Tambutte E, Tambutte S, Zoccola D (2004) Biomineralisation in reef-building corals: from molecular mechanisms to environmental control. C R Palevol 3:453–467

    Article  Google Scholar 

  • Andersson AJ, Gledhill D (2013) Ocean acidification and coral reefs: effects on breakdown, dissolution, and net ecosystem valcification. Ann Rev Mar Sci 5:321–348

    Article  PubMed  Google Scholar 

  • Andersson AJ, Kuffner IB, Mackenzie FT, Jokiel PL, Rodgers KS, Tan A (2009) Net loss of CaCO3 from a subtropical calcifying community due to seawater acidification: mesocosm-scale experimental evidence. Biogeosciences 6:1811–1823

    Article  CAS  Google Scholar 

  • Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci USA 105:17442–17446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apprill A, Rappe MS (2011) Response of the microbial community to coral spawning in lagoon and reef flat environments of Hawaii, USA. Aquat Microb Ecol 62:251–266

    Article  Google Scholar 

  • Atkinson MJ, Cuet P (2008) Possible effects of ocean acidification on coral reef biogeochemistry: topics for research. Mar Ecol Prog Ser 373:249–256

    Article  CAS  Google Scholar 

  • Atkinson M, Falter J (2003) Coral reefs. In: Black KD, Shimmield GB (eds) Biogeochemistry of marine systems. CRC Press, Boca Raton

    Google Scholar 

  • Atkinson M, Smith S (1983) C:N: P ratios of benthic marine plants. Limnol Oceanogr 23:568–574

    Article  Google Scholar 

  • Baker KS, Frouin R (1987) Relation between photosynthetically available radiation and total insolation at the surface of the ocean under clear skies. Limnol Oceanogr 32:1370–1377

    Article  Google Scholar 

  • Barnes DJ (1982) Light response curve for calcification in the staghorn coral, Acropora acuminata. Comp Biochem Physiol A Physiol 73:41–45

    Article  CAS  Google Scholar 

  • Bates NR, Amat A, Andersson AJ (2010) Feedbacks and responses of coral calcification on the Bermuda reef system to seasonal changes in biological processes and ocean acidification. Biogeosciences 7:2509–2530

    Article  CAS  Google Scholar 

  • Birrell CL, McCook LJ, Willis BL, Diaz-Pulido GA (2008) Effects of benthic algae on the replenishment of corals and the implications for the resilience of coral reefs. Oceanogr Mar Biol Annu Rev 46:25–63

    Article  Google Scholar 

  • Bischoff WD, Mackenzie FT, Bishop FC (1987) Stabilities of synthetic magnesian calcites in aqueous solution: comparison with biogenic materials. Geochim Cosmochim Acta 51:1413–1423

    Article  CAS  Google Scholar 

  • Bjork M, Mohammad SM, Bjorklund M, Semesi A (1995) Coralline algae, important coral reef builders threatened by pollution. Ambio 24:502–505

    Google Scholar 

  • Chalker BE, Taylor DL (1975) Light-enhanced calcification, and role of oxidative-phosphorylation on calcification of coral Acropora-cervicornis. Proc R Soc Lond B Biol Sci 190:323–331

    Article  CAS  PubMed  Google Scholar 

  • Chan NCS, Connolly SR (2013) Sensitivity of coral calcification to ocean acidification: a meta- analysis. Glob Chang Biol 19:282–290

    Article  PubMed  Google Scholar 

  • Chisholm JRM (2000) Calcification by crustose coralline algae on the northern Great Barrier Reef, Australia. Limnol Oceanogr 45:1476–1484

    Article  CAS  Google Scholar 

  • Cohen AL, Holcomb M (2009) Why corals care about ocean acidification: uncovering the mechanism. Oceanography 22:118–127

    Article  Google Scholar 

  • Cyronak T, Santos IR, Eyre BD (2013) Permeable coral reef sediment dissolution driven by elevated pCO2 and pore water advection. Geophys Res Lett 40:4876–4881

    Article  CAS  Google Scholar 

  • Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res A 34:1733–1743

    Article  CAS  Google Scholar 

  • Donnan DW, Moore PG (2003) Introduction. Aquat Conserv 13:S1–S3

    Article  Google Scholar 

  • Eyre B, Andersson AJ, Cyronak T (2014) Benthic coral reef calcium carbonate dissolution in an acidifying ocean. Nat Clim Chang 4:969–976

    Article  CAS  Google Scholar 

  • Erez J (1990) On the importance of food sources in coral-reef ecosystems. In: Dubinsky Z (ed) Ecosystems of the world: coral reefs. Elsevier, Amsterdam, pp 411–418

    Google Scholar 

  • Falter JL, Lowe RJ, Atkinson MJ, Cuet P (2012) Seasonal coupling and de-coupling of net calcification rates from coral reef metabolism and carbonate chemistry at Ningaloo Reef, Western Australia. J Geophys Res Oceans 117:C05003

    Google Scholar 

  • Falter JL, Lowe RJ, Zhang Z, McCulloch M (2013) Physical and biological controls on the carbonate chemistry of coral reef waters: effects of metabolism, wave forcing, sea level, and geomorphology. PLoS One 8:e53303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falter JL, Lowe RJ, Atkinson MJ, Monismith SG, Schar DW (2008) Continuous measurements of net production over a shallow reef community using a modified Eulerian approach. J Geophys Res Oceans 113:C07035

    Google Scholar 

  • Foster MS (2001) Rhodoliths: between rocks and soft places. J Phycol 37:659–667

    Article  Google Scholar 

  • Frankignoulle M, Gattuso JP, Biondo R, Bourge I, CopinMontegut G, Pichon M (1996) Carbon fluxes in coral reefs. 2. Eulerian study of inorganic carbon dynamics and measurement of air-sea CO2 exchanges. Mar Ecol Prog Ser 145:123–132

    Article  Google Scholar 

  • Gattuso JP, Allemand D, Frankignoulle M (1999) Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. Am Zool 39:160–183

    Article  CAS  Google Scholar 

  • Gattuso JP, Pichon M, Delesalle B, Canon C, Frankignoulle M (1996) Carbon fluxes in coral reefs. 1. Lagrangian measurement of community metabolism and resulting air-sea CO2 disequilibrium. Mar Ecol Prog Ser 145:109–121

    Article  Google Scholar 

  • Gattuso JP, Payri CE, Pichon M, Delesalle B, Frankignoulle M (1997) Primary production, calcification, and air-sea CO2 fluxes of a macroalgal-dominated coral reef community (Moorea, French Polynesia). J Phycol 33:729–738

    Article  Google Scholar 

  • Goreau TF, Goreau NI (1959) The physiology of skeleton formation in corals. II. Calcium deposition by hermatypic corals under various conditions in the reef. Biol Bull 117:239–250

    Article  CAS  Google Scholar 

  • Grigg RW (1982) Darwin point: a threshold for atoll formation. Coral Reefs 1:29–34

    Article  Google Scholar 

  • Houlbreque F, Tambutte E, Ferrier-Pages C (2003) Effect of zooplankton availability on the rates of photosynthesis, and tissue and skeletal growth in the scleractinian coral Stylophora pistillata. J Exp Mar Biol Ecol 296:145–166

    Article  Google Scholar 

  • Jokiel PL, Rodgers KS, Kuffner IB, Andersson AJ, Cox EF, Mackenzie FT (2008) Ocean acidification and calcifying reef organisms: a mesocosm investigation. Coral Reefs 27:473–483

    Article  Google Scholar 

  • Kinsey DW (1983) Standards of performance in coral reef primary production and carbon turnover. In: Barnes DJ (ed) Perspectives on coral reefs. Australian Institute of Marine Science, Townsville, pp 209–220

    Google Scholar 

  • Kinsey DW (1985) Metabolism, calcification and carbon production. In: Proceedings of 5th international coral reef symposium, vol. 4, pp 505–526

  • Kleypas JA, Langdon C (2006) Coral reefs and changing seawater carbonate chemistry. In: Phinney J, Hoegh-Guldberg O, Kleypas J, Skirving W, Strong A (eds) Coral reefs and climate change: science and management. American Geophysical Union, Washington, pp 73–110

    Chapter  Google Scholar 

  • Kleypas JA, McManus JW, Menez LAB (1999) Environmental limits to coral reef development: where do we draw the line? Am Zool 39:146–159

    Article  Google Scholar 

  • Kleypas JA, Feely RA, Fabry JV, Langdon C, Sabine CL, Robbins LL (2006) Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide for future research, report of a workshop held 18–20 April 2005, St. Petersburg, FL, sponsored by NSF, NOAA, and the US Geological Survey, 88

  • Kuffner IB, Andersson AJ, Jokiel PL, Rodgers KS, Mackenzie FT (2008) Decreased abundance of crustose coralline algae due to ocean acidification. Nat Geosci 1:114–117

    Article  CAS  Google Scholar 

  • Langdon C (2002) Review of experimental evidence for effects of CO2 on calcification of reef builders. In: Proceedings of 9th international coral reef symposium, vol. 2, pp 1091–1098

  • Langdon C, Atkinson MJ (2005) Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J Geophys Res Oceans 110:1–16

    Google Scholar 

  • Langdon C, Gattuso JP, Andersson AJ (2010) Measurements of calcification and dissolution of benthic organisms and communities. In: Riebesell U, Fabry VJ, Hansson L, Gattuso JP (eds) Guide to best practices for ocean acidification research and data reporting. Publications Office of the European Union, Luxembourg, pp 213–232

    Google Scholar 

  • Langdon C, Takahashi T, Sweeney C, Chipman D, Goddard J, Marubini F, Aceves H, Barnett H, Atkinson MJ (2000) Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Glob Biogeochem Cycles 14:639–654

    Article  CAS  Google Scholar 

  • Leclercq N, Gattuso JP, Jaubert J (2000) CO2 partial pressure controls the calcification rate of a coral community. Glob Chang Biol 6:329–334

    Article  Google Scholar 

  • Leclercq N, Gattuso JP, Jaubert J (2002) Primary production, respiration, and calcification of a coral reef mesocosm under increased CO2 partial pressure. Limnol Oceanogr 47:558–564

    Article  CAS  Google Scholar 

  • Martin S, Gattuso JP (2009) Response of Mediterranean coralline algae to ocean acidification and elevated temperature. Glob Chang Biol 15:2089–2100

    Article  Google Scholar 

  • Marubini F, Davies PS (1996) Nitrate increases zooxanthellae population density and reduces skeletogenesis in corals. Mar Biol 127:319–328

    Article  CAS  Google Scholar 

  • Marubini F, Atkinson M (1999) Effects of lowered pH and elevated nitrate on coral calcification. Mar Ecol Prog Ser 188:117–121

    Article  CAS  Google Scholar 

  • Marubini F, Barnett H, Langdon C, Atkinson MJ (2001) Dependence of calcification on light and carbonate ion concentration for the hermatypic coral Porites compressa. Mar Ecol Prog Ser 220:153–162

    Article  CAS  Google Scholar 

  • McCulloch M, Falter J, Trotter J, Montagna P (2012) Coral resilience to ocean acidification and global warming through pH up-regulation. Nat Clim Chang 2:623–627

    Article  CAS  Google Scholar 

  • McMahon A, Santos IR, Cyronak T, Eyre BD (2013) Hysteresis between coral reef calcification and the seawater aragonite saturation state. Geophys Res Lett 40:4675–4679

    Article  CAS  Google Scholar 

  • Mehrbach C, Culberson CH, Hawley JE, Pytkowicx RM (1973) Measurement of apparent dissociation constants of carbonic acid in seawater at atmospheric-pressure. Limnol Oceanogr 18:897–907

    Article  CAS  Google Scholar 

  • Morse DE, Morse ANC, Raimondi PT, Hooker N (1994) Morphogen-based chemical flypaper for Agaricia humilis coral larvae. Biol Bull 186:172–181

    Article  CAS  Google Scholar 

  • Morse JW, Andersson AJ, Mackenzie FT (2006) Initial responses of carbonate-rich shelf sediments to rising atmospheric pCO2 and “ocean acidification”: role of high Mg-calcites. Geochim Cosmochim Acta 70:5814–5830

    Article  CAS  Google Scholar 

  • Mucci A (1983) The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure. Am J Sci 283:780–799

    Article  CAS  Google Scholar 

  • Muscatine L, Goiran C, Land L, Jaubert J, Cuif JP, Allemand D (2005) Stable isotopes (δ13C and δ15 N) of organic matrix from coral skeleton. Proc Natl Acad Sci USA 102:1525–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Odum HT (1956) Primary production in flowing waters. Limnol Oceanogr 1:102–117

    Article  Google Scholar 

  • Ohde S, van Woesik R (1999) Carbon dioxide flux and metabolic processes of a coral reef, Okinawa. Bull Mar Sci 6:559–576

    Google Scholar 

  • Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL (2011) Projecting coral reef futures under global warming and ocean acidification. Science 333:418–422

    Article  CAS  PubMed  Google Scholar 

  • Pierrot DEL, Wallace DWR (2006) MS excel program developed for CO2 system calculations. ORNL/CDIAC-105a

  • Ribes M, Coma R, Atkinson MJ, Kinzie RA (2003) Particle removal by coral reef communities: picoplankton is a major source of nitrogen. Mar Ecol Prog Ser 257:13–23

    Article  Google Scholar 

  • Shamberger KEF, Feely RA, Sabine CL, Atkinson MJ, DeCarlo EH, Mackenzie FT, Drupp PS, Butterfield DA (2011) Calcification and organic production on a Hawaiian coral reef. Mar Chem 127:64–75

    Article  CAS  Google Scholar 

  • Shaw EC, McNeil BI, Tilbrook B (2012) Impacts of ocean acidification in naturally variable coral reef flat ecosystems. J Geophys Res Oceans 117:C03038

    Google Scholar 

  • Silverman J, Lazar B, Erez J (2007a) Community metabolism of a coral reef exposed to naturally varying dissolved inorganic nutrient loads. Biogeochemistry 84:67–82

    Article  CAS  Google Scholar 

  • Silverman J, Lazar B, Erez J (2007b) Effect of aragonite saturation, temperature, and nutrients on the community calcification rate of a coral reef. J Geophys Res Oceans 112:C05004

    Google Scholar 

  • Silverman J, Kline D, Johnson L, Rivlin T, Schneider K, Erez J, Lazar B, Caldeira K (2012) Carbon turnover rates in the One Tree Island reef: a 40-year perspective. J Geophys Res 117:G03023

    Article  Google Scholar 

  • Stoddart DR (1969) Ecology and morphology of recent coral reefs. Biol Rev 44:433–498

    Article  Google Scholar 

  • Sweeney C, Gloor E, Jacobson AR, Key RM, McKinley G, Sarmiento JL, Wanninkhof R (2007) Constraining global air-sea gas exchange for CO2 with recent bomb C-14 measurements. Glob Biogeochem Cycles 21:GB2015

    Article  Google Scholar 

  • Venn A, Tambutté E, Holcomb M, Allemand D, Tambutté S (2011) Live tissue imaging shows reef corals elevate pH under their calcifying tissue relative to seawater. PLoS One 6:e20013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venn A, Tambutte E, Holcomb M, Laurent J, Allemand D, Tambutte S (2013) Impact of seawater acidification on pH at tissue–skeleton interface and calcification in reef corals. Proc Natl Acad Sci USA 110:1634–1639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venti A, Andersson A, Langdon C (2014) Multiple driving factors explain spatial and temporal variability in coral calcification rates on the Bermuda platform. Coral Reefs 33:979–997

    Article  Google Scholar 

  • Wainwright SA (1963) Skeletal organization in the coral, Pocillopora damicornis. Q J Microsc Sci 3:169–183

    Google Scholar 

  • Wanninkhof R (1992) Relationship between wind speed and gas exchange over the ocean. J Geophys Res Oceans 97:7373–7382

    Article  Google Scholar 

  • Watanabe A, Kayanne H, Hata H, Kudo S, Nozaki K, Kato K, Negishi A, Ikeda Y, Yamano H (2006) Analysis of the seawater CO2 system in the barrier reef-lagoon system of Palau using total alkalinity-dissolved inorganic carbon diagrams. Limnol Oceanogr 51:1614–1628

    Article  CAS  Google Scholar 

  • Yates KK, Halley RB (2003) Measuring coral reef community metabolism using new benthic chamber technology. Coral Reefs 22:247–255

    Article  Google Scholar 

  • Yates KK, Halley RB (2006) CO3 2− concentration and pCO2 thresholds for calcification and dissolution on the Molokai reef flat, Hawaii. Biogeosciences 37:357–369

    Article  Google Scholar 

  • Zhang Z, Faler J, Lowe R, Ivey G (2012) The combined influence of hydrodynamic forcing and calcification on the spatial distribution of alkalinity in a coral reef system. J Geophys Res Oceans 117:C04034

    Google Scholar 

Download references

Acknowledgments

We would like to thank Craig Marquette, James Churchill, Pedro De La Torre, William Decarvalho, Jessica Masterman, Luke Mays, Elizabeth Bonk and Rebecca Belastock for assisting in sampling and analysis of samples. We would also like to thank Tom Farrar for providing files of surface irradiance and wind speed. This research was supported by Award No. USA 00002 and KSA 00011 to K. Hughen, D. McCorkle, and S. Lentz made by King Abdullah University of Science and Technology. This material is based upon work supported under a National Science Foundation Graduate Research Fellowship. Any opinions, findings, conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. N. Bernstein.

Additional information

Communicated by Biology Editor Dr. Anastazia Banaszak

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernstein, W.N., Hughen, K.A., Langdon, C. et al. Environmental controls on daytime net community calcification on a Red Sea reef flat. Coral Reefs 35, 697–711 (2016). https://doi.org/10.1007/s00338-015-1396-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-015-1396-6

Keywords

Navigation