Skip to main content
Log in

Abstract Riemann integrability and measurability

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

We prove that the spectral sets of any positive abstract Riemann integrable function are measurable but (at most) a countable amount of them. In addition, the integral of such a function can be computed as an improper classical Riemann integral of the measures of its spectral sets under some weak continuity conditions which in fact characterize the integral representation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. de Amo, R. del Campo and M. Díaz Carrillo: Absolute continuity theorems for abstract Riemann integration. Czech. Math. J. 57 (2007), 793–807.

    Article  MATH  Google Scholar 

  2. E. de Amo and M. Díaz Carrillo: Local and improper Daniell-Loomis integrals. Rend. Circ. Mat. Palermo 54 (2005), 329–342.

    Article  MATH  MathSciNet  Google Scholar 

  3. B. Anger and C. Portenier: Radon Integrals. Progress in Math. Vol. 103, Birkhauser, Boston, 1992.

    MATH  Google Scholar 

  4. G. Aumann: Integralerweiterungen mittels Normen. Arch. Math. 3 (1952), 441–450.

    Article  MATH  MathSciNet  Google Scholar 

  5. P. Bobillo Guerrero and M. Díaz Carrillo: Fonctions fortement-mesurables et mesurables par rapport a un systeme de Loomis. Bull. Soc. Roy. Sci. Ličge 55 (1987), 467–471.

    Google Scholar 

  6. C. W. Burrill: Measure, Integration and Probability. McGraw-Hill, 1972.

  7. G. Choquet: Theory of capacities. Ann. Inst. Fourier, Grenoble 5 (1953/54), 131–295.

    MathSciNet  Google Scholar 

  8. P. J. Daniell: A general form of integral. Ann. of Math. 19 (1917/18), 279–294.

    Article  MathSciNet  Google Scholar 

  9. D. Denneberg: Non-Additive Measure and Integral. Kluwer, 1994. 1138

  10. M. Díaz Carrillo and H. Günzler: Abstract Daniell-Loomis spaces. Bull. Austral. Math. Soc. 53 (1996), 135–142.

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Díaz Carrillo and H. Günzler: Daniell-Loomis integrals. Rocky Mount. J. Math. 27 (1997), 1075–1087.

    Article  MATH  Google Scholar 

  12. M. Díaz Carrillo and H. Günzler: Local integral metrics and Daniell-Loomis integrals. Bull. Austral. Math. Soc. 48 (1993), 411–426.

    Article  MATH  MathSciNet  Google Scholar 

  13. M. Díaz Carrillo and P. Muñoz Rivas: Finitely additive integration: integral extension with local-convergence. Ann. Sci. Math. Quebec 17 (1993), 145–154.

    MATH  MathSciNet  Google Scholar 

  14. M. Díaz Carrillo and P. Muñoz Rivas: Positive linear functionals and improper integration. Ann. Sci. Math. Quebec 18 (1994), 149–156.

    MATH  MathSciNet  Google Scholar 

  15. N. Dunford and J. T. Schwartz: Linear Operartors, part I, General Theory. Interscience, New-York, 1957.

    Google Scholar 

  16. O. Frink: Jordan measure and Riemann integration. Ann. of Math. 34 (1933), 518–526.

    Article  MathSciNet  Google Scholar 

  17. G. Greco: Sulla reppresentazione di funzionali mediante integrali. Rend. Sem. Mat. Padova 66 (1982), 21–42.

    MATH  MathSciNet  Google Scholar 

  18. H. Günzler: Integration. Bibliogr. Institut, Mannheim, 1985.

  19. H. Günzler: Linear Functionals which are Integrals. Rend. Sem. Mat. Fis. Milano 43 (1973), 167–176.

    Article  MathSciNet  Google Scholar 

  20. J. Kindler: AMazur-Orlicz theorem for submodular set functions. Journ. Math. Analysis Appl. 120 (1986), 533–564.

    Article  MATH  MathSciNet  Google Scholar 

  21. H. König: Measure and Integration. An advanced course in basic procedures and applications. Springer, 1997.

  22. L. H. Loomis: Linear functionals and content. Amer. J. Math. 76 (1954), 168–182.

    Article  MATH  MathSciNet  Google Scholar 

  23. W. A. J. Luxemburg: Integration with respect to finitely additive measures. Stud. Econ., Theory 2 (1991), 109–150.

  24. D. Maharam: Jordan fields and improper integrals. J. Math. Anal. and Appl. 133 (1988), 163–194.

    Article  MATH  MathSciNet  Google Scholar 

  25. W. F. Pfeffer: Integrals and Measures. Dekker, New-York, 1977.

    MATH  Google Scholar 

  26. J. Ridder: Over de Integraldefinities van Riemann en Lebesgue. Christiann Huygens 4 (1925/26), 246–250; zabnld correction, ibid. 5 (1927), 205.

    Google Scholar 

  27. F. W. Schäfke: Integrationstheorie I. J. Reine Angew. Math. 244 (1970), 154–176.

    MATH  MathSciNet  Google Scholar 

  28. F. W. Schäfke: Lokale Integralnormen and verallgemeinerte uneigentlich Riemann-Stiltjes-Integrals. J. Reine Angew. Math. 289 (1977), 118–134.

    MATH  MathSciNet  Google Scholar 

  29. F. Topsøe: On constructions of measures. Proceedings of the Conference on Topology and Measure I, Zinnowitz, 1974, Part 2, 343–381, Ernst-Moritz-Arndt Univ., Greifswald, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. del Campo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Amo, E., del Campo, R. & Díaz Carrillo, M. Abstract Riemann integrability and measurability. Czech Math J 59, 1123–1139 (2009). https://doi.org/10.1007/s10587-009-0080-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10587-009-0080-9

Keywords

MSC 2000

Navigation