Skip to main content

Advertisement

Log in

Uptake of groundwater nitrogen by a near-shore coral reef community on Bermuda

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Nutrient enrichment can slow growth, enhance bioerosion rates, and intensify algal competition for reef-building corals. In areas of high human population density and/or limited waste management, submarine groundwater discharge can transfer anthropogenic nutrients from polluted groundwater to coastal reefs. In this case study, we investigate the impact of submarine groundwater discharge on a near-shore reef in Bermuda, where over 60% of sewage generated by the island’s 64,000 residents enters the groundwater through untreated cesspits. Temperature, salinity, pH, and alkalinity were monitored at a groundwater discharge vent, three locations across the adjacent coral reef (0–30 m from shore), and a comparison patch reef site 2 km from shore. Groundwater discharge was characterized by low salinity, low aragonite saturation state (Ωar), high alkalinity, elevated nitrate + nitrite (NO3 + NO2; hereafter, “NO3”) concentrations (> 400 µM), and an elevated 15N/14N ratio of NO315N = 10.9 ± 0.02‰ vs. air, mean ± SD). Rainfall and tidal cycles strongly impacted groundwater discharge, with maximum discharge during low tide. NO3 concentrations on the near-shore reef averaged 4 µM, ten times higher than that found at the control site 2 km away, and elevated NO3 δ15N at the near-shore reef indicated sewage-contaminated groundwater as a significant nitrogen source. Tissue δ15N of Porites astreoides, a dominant reef-building coral, was elevated by ~ 3‰ on the near-shore reef compared to the control site, indicating that corals across the near-shore reef were assimilating groundwater-derived nitrogen. In addition, coral skeletal density and calcification rates across the near-shore reef were inversely correlated with NO3 concentration and δ15N, indicating a negative coral health response to groundwater-borne nutrient inputs. P. astreoides bioerosion rates, in contrast, did not show an effect from the groundwater input.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-Rousan S (2012) Skeletal extension rate of the reef building coral Porites species from Aqaba and their environmental variables. Nat Sci 4:731–739

    Google Scholar 

  • Baker DM, Murdoch TJT, Conti-Jerpe I, Fogel M (2016) Investigating Bermuda’s pollution history through stable isotope analyses of modern and museum-held gorgonian corals. Mar Pollut Bull 114:169–175

    Article  CAS  PubMed  Google Scholar 

  • Barkley HC, Cohen AL, Golbuu Y, Starczak VR, Decarlo TM, Shamberger KEF (2015) Changes in coral reef communities across a natural gradient in seawater pH. Sci Adv 1:e1500328

    Article  PubMed  PubMed Central  Google Scholar 

  • Bermuda Tourism Authority (2018) Visitor arrivals report: full year. https://www.gotobermuda.com/bta/visitor-statistics

  • Beukering PJH, Sarkis S, McKenzie E, Hess S, Brander L, Roelfsema M, Looijenstijn-van der Putten L, Bervoets T (2010) Total economic value of Bermuda’s coral reefs: valuation of ecosystem services. In: Bermuda Department of Conservation Services Executive Summary Report

  • Braman RS, Hendrix SA (1989) Nanogram nitrite and nitrate determination in environmental and biological materials by vanadium (III) reduction with chemiluminescence detection. Anal Chem 61:2715–2718

    Article  CAS  PubMed  Google Scholar 

  • Briceño HO, Boyer JN (2013) Water quality monitoring program for Bermuda’s coastal resources: final report. In: Southeast environmental research center technical report #T-591

  • Burnett WC, Taniguchi M, Oberdorfer J (2001) Measurement and significance of the direct discharge of groundwater into the coastal zone. J Sea Res 46:109–116

    Article  Google Scholar 

  • Cantin NE, Cohen AL, Karnauskas KB, Tarrant AM, McCorkle DC (2010) Ocean warming slows coral growth in the central Red Sea. Science 329:322–325

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Li S, Yu K (2013) Macrobioerosion in Porites corals in subtropical northern South China Sea: a limiting factor for high-latitude reef framework development. Coral Reefs 32:101–108

    Article  Google Scholar 

  • Cooper TF, De’ath G, Fabricius KE, Lough JM (2008) Declining coral calcification in massive Porites in two nearshore regions of the northern Great Barrier Reef. Glob Chang Biol 14:529–538

    Article  Google Scholar 

  • Crook E, Cohen AL, Rebolledo-Vieyra M, Hernandez L, Paytan A (2013) Reduced calcification and lack of acclimatization by coral colonies growing in areas of persistent natural acidification. Proc Natl Acad Sci USA 110:11044–11049

    Article  PubMed  PubMed Central  Google Scholar 

  • Cyronak T, Santos IR, Erler DV, Maher DT, Eyre BD (2014) Drivers of pCO2 variability in two contrasting coral reef lagoons: the influence of submarine groundwater discharge. Glob Biogeochem Cycles 28:398–414

    Article  CAS  Google Scholar 

  • DeCarlo TM, Cohen AL (2016) CoralCT: software tool to analyze computerized tomography (CT) scans of coral skeletal cores for calcification and bioerosion rates. Zenodo. https://doi.org/10.5281/zenodo.57855

    Article  Google Scholar 

  • DeCarlo TM, Cohen AL, Barkley HC, Cobban Q, Young C, Shamberger KE, Brainard RE, Golbuu Y (2015) Coral macrobioerosion is accelerated by ocean acidification and nutrients. Geology 43:7–10

    Article  CAS  Google Scholar 

  • Devlin Q (2015) Nutrient dynamics in the coral-algal symbiosis: Developing insight from biogeochemical techniques. Ph.D Thesis, University of Miami

  • Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res Part 1 Oceanogr Res Pap 34:1733–1743

    Article  CAS  Google Scholar 

  • Edinger EN, Limmon GV, Jompa J, Widjatmoko W, Heikoop JM, Risk MJ (2000) Normal coral growth rates on dying reefs: are coral growth rates good indicators of reef health? Mar Pollut Bull 40:404–425

    Article  CAS  Google Scholar 

  • Ferrier-Pagès C, Peirano A, Abbate M, Cocito S, Negri A, Rottier C, Riera P, Rodolfo-Metalpa R, Reynaud S (2011) Summer autotrophy and winter heterotrophy in the temperate symbiotic coral Cladocora caespitosa. Limnol Oceanogr 56:1429–1438

    Article  Google Scholar 

  • Fourqurean JW, Manuel SA, Coates KA, Kenworthy WJ, Boyer JN (2015) Water quality, isoscapes and stoichioscapes of seagrasses indicate general P limitation and unique N cycling in shallow water benthos of Bermuda. Biogeosciences 12:6235–6249

    Article  CAS  Google Scholar 

  • Granger J, Sigman DM (2009) Removal of nitrate with sulfamic acid for nitrate N and O isotope analysis with the denitrifier method. Rapid Commun Mass Spectrom 23:3753–3762

    Article  CAS  PubMed  Google Scholar 

  • Granger J, Sigman DM, Lehmann MF, Tortell PD (2008) Nitrogen and oxygen isotope fractionation during dissimilatory nitrate reduction by denitrifying bacteria. Limnol Oceanogr 53:2533–2545

    Article  CAS  Google Scholar 

  • Granger J, Sigman DM, Needoba JA, Harrison PJ (2004) Coupled nitrogen and oxygen isotope fractionation of nitrate during assimilation by cultures of marine phytoplankton. Limnol Oceanogr 49:1763–1773

    Article  CAS  Google Scholar 

  • Holcomb M, McCorkle DC, Cohen AL (2010) Long-term effects of nutrient and CO2 enrichment on the temperate coral Astrangia poculata (Ellis and Solander, 1786). J Exp Mar Bio Ecol 386:27–33

    Article  Google Scholar 

  • Holmes KE, Edinger EN, Hariyadi LimmonGV, Risk MJ (2000) Bioerosion of live massive corals and branching coral rubble on Indonesian coral reefs. Mar Pollut Bull 40:606–617

    Article  CAS  Google Scholar 

  • Hughes TP, Kerry JT, Baird AH, Connolly SR, Dietzel A, Eaken CM, Heron SF, Hoey AS, Hoogenboom MO, Liu G, McWilliam MJ, Pears RJ, Pratchett MS, Skirving WJ, Stella JS, Torda G (2018) Global warming transforms coral reef assemblages. Nature 556:492–496

    Article  CAS  PubMed  Google Scholar 

  • Huston M (1985) Variation in coral growth rates with depth at Discovery Bay, Jamaica. Coral Reefs 4:19–25

    Article  Google Scholar 

  • Jackson JB, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan HS, Pandolfi JM, Peterson CH, Steneck RS, Tegner MJ, Warner RR (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–637

    Article  CAS  PubMed  Google Scholar 

  • Jones R, Parsons R, Watkinson E, Kendell D (2011) Sewage contamination of a densely populated coral “atoll” (Bermuda). Environ Monit Assess 179:309–324

    Article  PubMed  Google Scholar 

  • Kleypas JA, McManus JW, Meñez LAB (1999) Environmental limits to coral reef development: where do we draw the line? Am Zool 39:146–159

    Article  Google Scholar 

  • Kopp C, Pernice M, Domart-Coulon I, Djediat C, Spangenberg JE, Alexander TDL, Hignette M, Meziane T, Meibom A (2013) Highly dynamic cellular-level response of symbiotic coral to a sudden increase in environmental nitrogen. mBio 4:e00052-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langdon C, Atkinson MJ (2005) Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J Geophys Res 110:C09S07

    Article  CAS  Google Scholar 

  • Littler MM, Littler DS, Brooks BL (2009) Herbivory, nutrients, stochastic events, and relative dominances of benthic indicator groups on coral reefs: a review and recommendations. Smithsonian Contrib Mar Sci 38:401–414

    Article  Google Scholar 

  • Logan A, Tomascik T (1991) Extension growth rates in two coral species from high-latitude reefs of Bermuda. Coral Reefs 10:155–160

    Article  Google Scholar 

  • Lough JM, Cooper TF (2011) New insights from coral growth band studies in an era of rapid environmental change. Earth Sci Rev 108:170–184

    Article  CAS  Google Scholar 

  • Marubini F, Davies PS (1996) Nitrate increases zooxanthellae population density and reduces skeletogenesis in corals. Mar Biol 127:319–328

    Article  CAS  Google Scholar 

  • Marubini F, Thake B (1999) Bicarbonate addition promotes coral growth. Limnol Oceanogr 44:716–720

    Article  CAS  Google Scholar 

  • Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907

    Article  CAS  Google Scholar 

  • Mollica NR, Guo W, Cohen AL, Huang KF, Foster GL, Donald HK, Solow AR (2018) Ocean acidification affects coral growth by reducing skeletal density. PNAS 115:1754–1759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore WS (2010) The effect of submarine groundwater discharge on the ocean. Ann Rev Mar Sci 2:59–88

    Article  PubMed  Google Scholar 

  • Muscatine L, Kaplan IR (1994) Resource partitioning by reef corals as determined from stable isotope composition, II: δ15N of zooxanthellae and animal tissue versus depth. Pac Sci 48:304–312

    Google Scholar 

  • Muscatine L, Porter JW, Kaplan IR (1989) Resource partitioning by reef corals as from stable isotope composition, I: δ13C of zooxanthellae and animal tissue vs depth. Mar Biol 100:185–193

    Article  Google Scholar 

  • Nahon S, Richoux NB, Kolasinski J, Desmalades M, Pages CF, Lecellier G, Planes S, Lecellier VB (2013) Spatial and temporal variations in stable carbon (δ13C) and nitrogen (δ15N) isotopic composition of symbiotic scleractinian corals. PLoS ONE 8:e81247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • National Meteorological Center (2017) IGOSS Reyn_SmithLIv2 Sea Surface Temperature Weekly Dataset; 64.5 W, 31.5 N. IRI/LDEO Climate Data Library. http://iridl.ldeo.columbia.edu/SOURCES/.IGOSS/.nmc/.Reyn_SmithOIv2/.weekly/.sst/

  • Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Karen A, Cooke RG, Jackson JBC (2003) Global trajectories of the long-term decline of coral reef ecosystems. Science 301:955–958

    Article  CAS  PubMed  Google Scholar 

  • Paytan A, Shellenbarger GG, Street JH, Gonneea ME, Davis K, Young MB, Moore WS (2006) Submarine groundwater discharge: an important source of new inorganic nitrogen to coral reef ecosystems. Limnol Oceanogr 51:343–348

    Article  CAS  Google Scholar 

  • Pierrot DEL, Wallace DWR (2006) MS Excel program developed for CO2 system calculations. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge

  • Prouty NG, Cohen AL, Yates KK, Storlazzi CD, Swarzenski PW, White D (2017) Vulnerability of coral reefs to bioerosion from land-based sources of pollution. J Geophys Res Oceans 122:9319–9331

    Article  CAS  Google Scholar 

  • Reynaud S, Martinez P, Houlbrèque F, Billy I, Allemand D, Ferrier-Pagès C (2009) Effect of light and feeding on the nitrogen isotopic composition of a zooxanthellate coral: role of nitrogen recycling. Mar Ecol Prog Ser 392:103–110

    Article  CAS  Google Scholar 

  • Scott PJB, Risk MJ (1988) The effect of Lithophaga (Bivalvia: Mytilidae) boreholes on the strength of the coral Porites lobata. Coral Reefs 7:145–151

    Article  CAS  Google Scholar 

  • Shantz AA, Burkepile DE (2014) Context-dependent effects of nutrient loading on the coral–algal mutualism. Ecology 95:1995–2005

    Article  PubMed  Google Scholar 

  • Sigman DM, Casciotti KL, Andreani M, Barford C, Galanter M, Böhlke JK (2001) A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal Chem 73:4145–4153

    Article  CAS  PubMed  Google Scholar 

  • Simmons JAK (1983) The biogeochemistry of the Devonshire Lens, Bermuda. MSc. Thesis, University of New Hampshire

  • Simmons JAK, Jickells T, Knap A, Lyons WB (1985) Nutrient concentrations in groundwaters from Bermuda: anthropogenic effects. In: Caldwell DE, Brierly JA (eds) Planetary ecology. Van Nostrand Reinhold Company Inc, New York, pp 383–398

    Google Scholar 

  • Simmons JAK, Lyons WB (1994) The ground water flux of nitrogen and phosphorus to Bermuda’s coastal waters. Water Resour Bull 30:983–991

    Article  CAS  Google Scholar 

  • Slomp CP, Van Cappellen P (2004) Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. J Hydrol 295:64–86

    Article  CAS  Google Scholar 

  • Smith SR, Hellin DC, McKenna SA (1998) Marine environmental impact studies on the thermal effluent released from the Tynes Bay incinerator and ash waste disposal in Castle Harbour. In: Bermuda biological station for research special publication no. 35

  • Smith SR, Sarkis S, Murdoch TJT, Weil E, Croquer A, Bates NR, Johnson RJ, de Putron SA, Andersson AJ (2013) Threats to coral reefs of Bermuda. In: Sheppard CRC (ed) Coral reefs of the United Kingdom overseas territories. Springer, Dordrecht, pp 173–188

    Chapter  Google Scholar 

  • Sotka EE, Hay ME (2009) Effects of herbivores, nutrient enrichment, and their interactions on macroalgal proliferation and coral growth. Coral Reefs 28:555–568

    Article  Google Scholar 

  • Swart PK, Evans S, Capo T, Altabet M (2014) The fractionation of nitrogen and oxygen isotopes in macroalgae during the assimilation of nitrate. Biogeosciences 11:6147–6157

    Article  Google Scholar 

  • Swart PK, Saied A, Lamb K (2005) Temporal and spatial variation in the δ15N and δ13C of coral tissue and zooxanthellae in Montastraea faveolata collected from the Florida reef tract. Limnol Oceanogr 50:1049–1058

    Article  CAS  Google Scholar 

  • Thompson AM, Foster SSD (1986) Effect of urbanization on the groundwater of limestone islands: an analysis of the Bermuda case. J Inst Water Eng Sci 40:527–540

    Google Scholar 

  • Vacher H (1978) Hydrogeology of Bermuda: significance of an across-the-island variation in permeability. J Hydrol 39:207–226

    Article  Google Scholar 

  • Venti A, Kadko D, Andersson AJ, Langdon C, Bates NR (2012) A multi-tracer model approach to estimate reef water residence times. Limnol Oceanogr Methods 10:1078–1095

    Article  Google Scholar 

  • Venti A, Andersson A, Langdon C (2014) Multiple driving factors explain spatial and temporal variability in coral calcification rates on the Bermuda platform. Coral Reefs 33:999–1001

    Article  Google Scholar 

  • Wang XT, Sigman DM, Cohen AL, Sinclair DJ, Sherrell RM, Weigand MA, Erler DV, Ren H (2015) Isotopic composition of skeleton-bound organic nitrogen in reef-building symbiotic corals: a new method and proxy evaluation at Bermuda. Geochim Cosmochim Acta 148:179–190

    Article  CAS  Google Scholar 

  • Weigand MA, Foriel J, Barnett B, Oleynik S, Sigman DM (2016) Updates to instrumentation and protocols for isotopic analysis of nitrate by the denitrifier method. Rapid Commun Mass Spectrom 30:1365–1383

    Article  CAS  PubMed  Google Scholar 

  • Woodley J, Alcolado P, Austin T, Barnes J, Claro-Madruga R, Ebanks-Petrie G, Estrada R, Geraldes F, Glasspool A, Homer F, Luckhurst B, Phillips E, Shim D, Smith SR, Sealey KS, Vega M, Ward J, Wiener J (2000) Status of coral reefs in the Northern Caribbean and Western Atlantic. In: Wilkinson C (ed) Status of coral reefs of the world: 2000. Global Coral Reef Monitoring Network, Australian Institute of Marine Science, Townsville, pp 261–285

    Google Scholar 

  • Wooldridge SA (2009) Water quality and coral bleaching thresholds: formalising the linkage for the inshore reefs of the Great Barrier Reef, Australia. Mar Pollut Bull 58:745–751

    Article  CAS  PubMed  Google Scholar 

  • Wooldridge SA (2010) Is the coral-algae symbiosis really “mutually beneficial” for the partners? Bioessays 32:615–625

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank H. Rivera, J. Middleton, H. Barkley, S. de Putron, K. Pietro, M. A. Weigand, P. Barbosa, T. deCarlo, V. Yao, S. Bellamy, T. Phelps, K. Wong, A. Ratteray, C. Emerson, A. Finkelstein, H. Reich, R. Bier, A. Schmidt, I. Salvaterra, C. Walsh, V. Schmidt, S. Kennedy, D. Becker, A. Hunter, K. Hollis, D. Ward, S. Cramer, D. Wellwood, P. Henderson, and the Bermuda Institute of Ocean Sciences staff for fieldwork and analysis assistance. We also thank S. Pacala, S. R. Smith, J. Thomson, and G. Smith for insightful discussion and three anonymous reviewers for their constructive feedback on the manuscript. This work was funded by the Princeton Environmental Institute through the Smith–Newton Scholars Program and Colvin Memorial Award to Z.C.S. and through the Grand Challenges Program to D.M.S., a grant from the Princeton University Ecology and Evolutionary Biology Department to Z.C.S., BIOS Grants-in-Aid to Z.C.S. and A.L.C, a Link Foundation award to A.L.C., a U.S. NSF Graduate Research Fellowship to V.H.L., and U.S. NSF grants OCE-1536547, OCE-1536368, and OCE-1537338 to S. de Putron, D.M.S., and A.L.C, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoe C. Sims.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Topic Editor Mark Vermeij

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 649 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sims, Z.C., Cohen, A.L., Luu, V.H. et al. Uptake of groundwater nitrogen by a near-shore coral reef community on Bermuda. Coral Reefs 39, 215–228 (2020). https://doi.org/10.1007/s00338-019-01879-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-019-01879-5

Keywords

Navigation