Skip to main content
Log in

The Kardar–Parisi–Zhang Equation as Scaling Limit of Weakly Asymmetric Interacting Brownian Motions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a system of infinitely many interacting Brownian motions that models the height of a one-dimensional interface between two bulk phases. We prove that the large scale fluctuations of the system are well approximated by the solution to the KPZ equation provided the microscopic interaction is weakly asymmetric. The proof is based on the martingale solutions of Gonçalves and Jara (Arch Ration Mech Anal 212(2):597–644, 2014) and the corresponding uniqueness result of Gubinelli and Perkowski (Energy solutions of KPZ are unique, 2015).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aldous, D.: Weak convergence and the general theory of processes. (1981). https://www.stat.berkeley.edu/~aldous/Papers/weak-gtp.pdf. Accessed 24 May 2017

  2. Avram, F., Taqqu, M.S.: Noncentral limit theorems and Appell polynomials. Ann. Probab. 15(2), 767–775 (1987)

  3. Ben Arous G., Deuschel J.-D.: The construction of the d +  1-dimensional Gaussian droplet. Comm. Math. Phys. 179, 467–488 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bertini L., Giacomin G.: Stochastic Burgers and KPZ equations from particle systems. Commun. Math. Phys. 183(3), 571–607 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Billingsley P.: Convergence of Probability Measures. Wiley, Hoboken (2013)

    MATH  Google Scholar 

  6. Borodin A., Corwin I.: Macdonald processes. Probab. Theory Relat. Fields 158(1), 225–400 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Borodin A., Corwin I., Ferrari P.L.: Free energy fluctuations for directed polymers in random media in 1 + 1 dimensions. Commun. Pure Appl. Math. 67(7), 1129–1214 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caputo P.: Uniform Poincaréinequalities for unbounded conservative spin systems: the non-interacting case. Stoch. Process. Appl. 106(2), 223–244 (2003)

    Article  MATH  Google Scholar 

  9. Chentsov N.N.: Weak convergence of stochastic processes whose trajectories have no discontinuities of the second kind and the heuristic approach to the Kolmogorov–Smirnov tests. Theory Probab. Appl. 1(1), 140–144 (1956)

    Article  Google Scholar 

  10. Corwin I.: The Kardar–Parisi–Zhang equation and universality class. Random Matrices: Theory Appl. 1(01), 1130001 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Corwin I., Quastel J., Remenik D.: Renormalization fixed point of the KPZ universality class. J. Stat. Phys. 160(5), 815–834 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Corwin, I., Shen, H., Tsai, L-C.: ASEP (q, j) converges to the KPZ equation. arXiv preprint arXiv:1602.01908 (2016)

  13. Corwin, I., Tsai, L-C.: KPZ equation limit of higher-spin exclusion processes. arXiv preprint arXiv:1505.04158 (2015)

  14. Chang C.C., Yau H.-T.: Fluctuations of one dimensional Ginzburg–Landau models in nonequilibrium. Commun. Math. Phys. 145, 209–239 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Deuschel J.-D., Giacomin G., Ioffe D.: Large deviations and concentration properties for \({\nabla \phi}\) interface models. Probab. Theory Relat. Fields 117, 49–111 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dembo A., Tsai L-C: Weakly asymmetric non-simple exclusion process and the Kardar–Parisi–Zhang equation. Commun. Math. Phys. 341(1), 219–261 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Donsker M.D., Varadhan S.R.S.: Large deviations from a hydrodynamic scaling limit. Commun. Pure Appl. Math. 42, 243–270 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ethier, S.N., Kurtz, T.G.: Markov processes: characterization and convergence, vol. 282. Wiley, Hoboken (2009)

  19. Franco T., Gonçalves P., Simon M.: Crossover to the stochastic Burgers equation for the WASEP with a slow bond. Commun. Math. Phys. 346(3), 801–838 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Friz P.K., Hairer M.: A Course on Rough Paths. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  21. Funaki T., Nishikawa T.: Large deviations for the Ginzburg–Landau \({\nabla \phi}\) interface model. Probab. Theory Relat. Fields 120, 535–568 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Funaki T., Quastel J.: KPZ equation, its renormalization and invariant measures. Stoch. Partial Differ. Equ.: Anal. Comput. 3(2), 159–220 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Fritz J.: On the hydrodynamic limit of a one-dimensional Ginzburg–Landau lattice model. The a priori bounds. J. Stat. Phys. 47(3), 551–572 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Funaki T., Spohn H.: Motion by mean curvature from the Ginzburg–Landau \({\nabla \phi}\) interface model. Commun. Math. Phys. 185(1), 1–36 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Ferrari P.L., Spohn H., Weiss T.: Scaling limit for Brownian motions with one-sided collisions. Ann. Appl. Probab. 25(3), 1349–1382 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Funaki, T.: Stochastic interface models. In: Picard, J. (ed.) Lectures on Probability Theory and Statistics, Ecole d’Eté de Probabilités de Saint-Flour XXXIII-2003, Springer (2005)

  27. Gubinelli M., Imkeller P., Perkowski N.: Paracontrolled distributions and singular PDEs. Forum Math., Pi. 3(6), 1–75 (2015)

    MathSciNet  MATH  Google Scholar 

  28. Gubinelli M., Jara M.: Regularization by noise and stochastic Burgers equations. Stoch. Partial Differ. Equ.: Anal. Comput. 1(2), 325–350 (2013)

    MathSciNet  MATH  Google Scholar 

  29. Gonçalves P., Jara M.: Nonlinear fluctuations of weakly asymmetric interacting particle systems. Arch. Ration. Mech. Anal. 212(2), 597–644 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gonçalves P., Jara M., Sethuraman S.: A stochastic Burgers equation from a class of microscopic interactions. Ann. Probab. 43(1), 286–338 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gonçalves P., Simon M.: Second order Boltzmann–Gibbs principle for polynomial functions and applications. J. Stat. Phys. 166(1), 90–113 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Giacomin, G., Olla, S., Spohn, H.: Equilibrium fluctuations for \({\nabla \varphi}\) interface model. Ann. Probab. 29(3), 1138–1172, (2001)

  33. Gubinelli, M., Perkowski, N.: Energy solutions of KPZ are unique. arXiv preprint arXiv:1508.07764 (2015)

  34. Gubinelli M., Perkowski N.: KPZ reloaded. Commun. Math. Phys. 349(1), 165–269 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Gubinelli, M., Perkowski, N.: The Hairer–Quastel universality result at stationarity. arXiv preprint arXiv:1602.02428 (2016)

  36. Guo M.Z., Papanicolaou G.C., Varadhan S.R.S.: Nonlinear diffusion limit for a system with nearest neighbor interactions. Commun. Math. Phys. 118, 31–59 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Hairer M.: Solving the KPZ equation. Ann. Math. 178(2), 559–664 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Hairer M.: A theory of regularity structures. Invent. Math. 198(2), 269–504 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Hoshino, M.: Paracontrolled calculus and Funaki–Quastel approximation for the KPZ equation. arXiv preprint arXiv:1605.02624 (2016)

  40. Hairer, M., Quastel, J.: A class of growth models rescaling to KPZ. arXiv preprint arXiv:1512.07845 (2015).

  41. Hairer, M., Shen, H.: A central limit theorem for the KPZ equation. arXiv preprint arXiv:1507.01237 (2015).

  42. Komorowski, T., Landim, C., Olla, S.: Fluctuations in Markov processes: time symmetry and martingale approximation, vol. 345. Springer Science & Business Media, Berlin (2012)

  43. Labbé, Cyril: Weakly asymmetric bridges and the KPZ equation. to appear in Commun. Math. Phys arXiv:1603.03560

  44. Millet A., Nualart D., Sanz M.: Integration by parts and time reversal for diffusion processes. Ann. Probab. 17(1), 208–238 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  45. Menz Georg, Otto Felix: Uniform logarithmic sobolev inequalities for conservative spin systems with super-quadratic single-site potential. Ann. Probab. 41(3B), 208–238 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Mitoma, I.: Tightness of probabilities on C([0, 1]; Y′) and D([0, 1]; Y′). Ann. Prob. 11(4), 989–999 (1983)

  47. Otto, F., Weber, H.: Quasilinear SPDEs via rough paths. arXiv preprint arXiv:1605.09744 (2016)

  48. Quastel, J.: The Kardar–Parisi–Zhang equation and universality class. In: XVIIth International Congress on Mathematical Physics. pp 113–133 (2014)

  49. Quastel J., Spohn H.: The one-dimensional KPZ equation and its universality class. J. Stat. Phys. 160(4), 965–984 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Russo, F., Vallois, P.: Elements of stochastic calculus via regularization. Séminaire de Probabilités XL, pp 147–185. Springer Berlin (2007)

  51. Spohn H.: Equilibrium fluctuations for interacting Brownian particles. Commun. Math. Phys. 103, 1–33 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Spohn, H.: The Kardar–Parisi–Zhang equation-a statistical physics perspective. arXiv preprint arXiv:1601.00499 (2016)

  53. Sasamoto T., Spohn H.: Superdiffusivity of the 1D lattice Kardar–Parisi–Zhang equation. J. Stat. Phys. 137(5–6), 917–935 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Sasamoto T., Spohn H.: Point-interacting Brownian motions in the KPZ universality class. Electron. J. Probab. 20, 87 (2015)

    MathSciNet  MATH  Google Scholar 

  55. Zhu M.: Equilibrium fluctuations for one-dimensional Ginzburg–Landau lattice model. Nagoya Math. J. 117, 63–92 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Perkowski.

Additional information

Communicated by H. Spohn

J. Diehl: Finanical support by the DAAD P.R.I.M.E. program is gratefully acknowledged.

N. Perkowski: Financial support by the DFG via Research Unit FOR 2402 is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diehl, J., Gubinelli, M. & Perkowski, N. The Kardar–Parisi–Zhang Equation as Scaling Limit of Weakly Asymmetric Interacting Brownian Motions. Commun. Math. Phys. 354, 549–589 (2017). https://doi.org/10.1007/s00220-017-2918-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-2918-6

Navigation