Skip to main content
Log in

Encapsulation of caffeine in polysaccharide oil-core nanocapsules

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Nanoemulsion droplets stabilized with a polysaccharide multilayer film were used as carriers for caffeine. Multilayered shells were formed through a subsequent layer-by-layer adsorption of oppositely charged chitosan and alginate (sodium salt) onto emulsion droplets or oil-core nanocapsules at low ionic strength. The hydrophilic positively charged molecules of the drug were impregnated into the film after each alginate layer. The experimental results showed dependence of the encapsulation efficiency of caffeine on the number of the adsorbed polymer layers and on the properties of chitosan used for formation of the film (molecular weight and degree of acetylation). Despite the low encapsulation efficiency of the drug into the capsules (~ 40%) compared with other encapsulation systems, the amount loaded into the film was high enough and pharmacological doses were achieved with very small volumes of the dispersion.

Encapsulation of caffeine in polysaccharide multilayered oil-core nanocapsules

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tellone E, Ficcara S, Russo A, Bellocco E, Barreca D, Lagana G, Leuzzi U, Pirroli D, De Rosa MC, Giardina B, Gatieri A (2012) Caffeine inhibits membrane derangement by antioxidant activity and blocking caspase 3 activation. Biochimie 94:393–402. https://doi.org/10.1016/j.biochi.2011.08.007

    Article  CAS  PubMed  Google Scholar 

  2. Inestrosa NC, Alvarez A, Pérez CA, Moreno RD, Vicente M, Linker C, Casanueva OI, Soto C, Garrido J (1996) Acetylcholinesterase accelerates assembly of amyloid β-peptides into Alzheimer’s fibrils: possible role of the peripheral site of the enzyme. Neuron 16:881–891. https://doi.org/10.1016/s0896-6273(00)80108-7

    Article  CAS  PubMed  Google Scholar 

  3. Carelli-Alinovi C, Ficarra S, Russo A, Giunta E, Barreca D, Galtieri A, Misiti F, Tellone E (2016) Involvement of acetylcholinesterase and protein kinase C in the protective effect of caffeine against β-amyloid-induced alterations in red blood cells. Biochimie 121:52–59. https://doi.org/10.1016/j.biochi.2015.11.022

    Article  CAS  PubMed  Google Scholar 

  4. Floride E, Föller M, Ritter M, Lang F (2008) Caffeine inhibit suicidal RBC death. Cell Physiol Biochem 22:253–260. https://doi.org/10.1159/000149803

    Article  CAS  PubMed  Google Scholar 

  5. Rosso A, Mossey J, Lippa CF (2008) Caffeine: neuroprotective functions in cognition and Alzheimer’s disease. J Am Alzheimers Dis Other Demen 23:417–422. https://doi.org/10.1177/1533317508320083

    Article  Google Scholar 

  6. Arendash GW, Schleif W, Rezai-Zadeh K, Jacson EK, Zacharia LC, Cracchiolo JR, Shippy D, Tan J (2006) Caffeine protects Alzheimer’s mice against cognitive impairment and reduces brain beta-amyloid production. Neuroscience 142:941–952. https://doi.org/10.1016/j.neuroscience.2006.07.021

    Article  CAS  PubMed  Google Scholar 

  7. Chen X, Gawryluk GW, Wagener JF, Ghribi O, Geiger JD (2008) Caffeine blocks disruption of blood brain barrier in a rabbit model of Alzheimer’s disease. J Neuroinflammation 5:12–18. https://doi.org/10.1186/1742-2094-5-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen X, Ghribi O, Geiger JD (2010) Caffeine protects against disruptions of the blood-brain barrier in animal models of Alzheimer’s and Parkinson’s diseases. J Alzheimers Dis 20:S127–S141. https://doi.org/10.3233/JAD-2010-1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen X, Lan X, Roche I, Liu R, Geiger JD (2008) Caffeine protects against MPTP-induced blood-brain-barrier dysfunction in mouse striatum. J Neurochem 107:1147–11657. https://doi.org/10.1111/j.1471-4159.2008.05697.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ross GW, Abbott RD, Petrovitch H, White LR, Tanner CM (2000) Relationship between caffeine intake and Parkinson disease. JAMA 284:1378–1379. https://doi.org/10.1001/jama.284.11.1378

    Article  CAS  PubMed  Google Scholar 

  11. Touitou E, Junginger HE, Weiner ND, Nagai T, Mezei M (1994) Liposomes as carriers for topical and transdermal delivery. J Pharm Sci 83:1189–1203. https://doi.org/10.1002/jps.2600830902

    Article  CAS  PubMed  Google Scholar 

  12. Cai Y, Gaffney SH, Lilley TH, Magnolato D, Martin R, Spencer CM, Haslam E (1990) Polyphenol interactions. Part 4. Model studies with caffeine and cyclodextrins. J Chem Soc Perkin Trans 2:2197–2209. https://doi.org/10.1039/P29900002197

    Article  Google Scholar 

  13. Gunasekaran S, Ko S, Xiao L (2007) Use of whey proteins for encapsulation and controlled delivery applications. J Food Eng 83:31–40. https://doi.org/10.1016/j.jfoodeng.2006.11.001

    Article  CAS  Google Scholar 

  14. Bourbon A, Cerqueira MA, Vicente A (2016) Encapsulation and controlled release of bioactive compounds in lactoferrin-glycomacropeptide nanohydrogels: curcumin and caffeine as model compounds. J Food Eng 180:110–119. https://doi.org/10.1016/j.jfoodeng.2016.02.016

    Article  CAS  Google Scholar 

  15. Liedana N, Martin E, Tellez C, Coronas J (2013) One-step encapsulation of caffeine in SBA-15 type and non-ordered cilicas. Chem Eng J 223:714–721. https://doi.org/10.1016/j.cej.2013.03.041

    Article  CAS  Google Scholar 

  16. Madadlou A, Jaberipour S, Eskandari MH (2014) Nanoparticulation of enzymatically cross-linked whey proteins to encapsulate caffeine via microemulsification/heat gelation procedure. LWT- Food Sci Technol 57:725–730. https://doi.org/10.1016/j.lwt.2014.02.041

    Article  CAS  Google Scholar 

  17. Sriamornask P, Kennedy RA (2007) Effect of drug solubility on release behavior of calcium polysaccharide gel-coated pellets. Eur J Pharm Sci 32:231–239. https://doi.org/10.1016/j.ejps.2007.08.001

    Article  CAS  Google Scholar 

  18. Fuciños C, Miguez M, Fuciños P, Pastrana LM, Rua ML, Vicente AA (2016) Creating functional nanostructures: encapsulation of caffeine into α-lactalbumin nanotubes. Innov Food Sci Emerg Technol 40:10–17. https://doi.org/10.1016/j.ifset.2016.07.030

    Article  CAS  Google Scholar 

  19. Belscak-Cvitanovic A, Komes D, Karlovic S, Djakovic S, Spoljaric I, Mrsic G, Jezek D (2015) Improving the controlled delivery formulation of caffeine in alginate hydrogel beads combined with pectin, carrageenan, chitosan and psyllium. Food Chem 167:378–386. https://doi.org/10.1016/j.foodchem.2014.07.011

    Article  CAS  PubMed  Google Scholar 

  20. Ryu S, Choi SK, Joung SS, Suh H, Cha YS, Lee S, Lim K (2001) Caffeine as a lipolytic food component increases endurance performance in rats and athletes. J Nutr Sci Vitaminol 47:139–146. https://doi.org/10.3177/jnsv.47.139

    Article  CAS  PubMed  Google Scholar 

  21. Ogawa S, Decker EA, McClements DJ (2003) Production and characterization of O/W emulsions containing cationic droplets stabilized by lecithin-chitosan membranes. J Agric Food Chem 51:2806–2812. https://doi.org/10.1021/jf020590f

    Article  CAS  PubMed  Google Scholar 

  22. Mun S, Decker EA, Mcclements DJ (2005) Influence of droplet characteristics on the formation of oil-in-water emulsions stabilized by surfactant-chitosan layers. Langmuir 21:6228–6234. https://doi.org/10.1021/la050502w

    Article  CAS  PubMed  Google Scholar 

  23. Calvo P, Remufifin-Ldpez C, Vila-Jato JL, Alonso MJ (1997) Development of positively charged colloidal drug carriers: chitosan-coated polyester nanocapsules and submicron-emulsions. Colloid Polym Sci 275:46–53. https://doi.org/10.1007/s003960050050

    Article  CAS  Google Scholar 

  24. Bagheri L, Madadlou A, Yarmand M, Mousavi ME (2014) Spray-dried alginate microparticles carrying caffeine-loaded and potentially bioactive nanoparticles. Food Res 62:1113–1119. https://doi.org/10.1016/j.foodres.2014.05.040

    Article  CAS  Google Scholar 

  25. Goycoolea FM, Milkova V (2017) Electrokinetic behavior of chitosan adsorbed on o/w nanoemulsion droplets. Colloids Surf A Physicochem Eng Asp 519:205–211. https://doi.org/10.1016/j.colsurfa.2016.05.093

    Article  CAS  Google Scholar 

  26. Volodkin D, von Klitznig R (2014) Competing mechanisms in polyelectrolyte multilayer formation and swelling: polycation-polyanion pairing vs. polyelectrolyte-ion pairing. Curr Opin Colloid Interface Sci 19:25–31. https://doi.org/10.1016/j.cocis.2014.01.001

    Article  CAS  Google Scholar 

  27. Fredholm BB (1995) Adenosine, adenosine receptors and the actions of caffeine. Pharmacol Toxicol 76:93–101. https://doi.org/10.1111/j.1600-0773.1995.tb00111.x

    Article  CAS  PubMed  Google Scholar 

  28. Bagheri L, Madadlou A, Yarmand M, Mousavi ME (2014) Potentially bioactive and caffeine-loaded peptidic sub-micron and nanoscalar particles. J Funct Foods 6:462–469. https://doi.org/10.1016/j.jff.2013.11.012

    Article  CAS  Google Scholar 

  29. Santander-Ortega MJ, Peula-Garcia JM, Goycoolea FM, Ortega-Vinuesa JL (2011) Chitosan nanocapsules: effect of chitosan molecular weight and acetylation degree on electrokinetic behavior and colloidal stability. Colloids Surf B: Biointerfaces 82:571–580. https://doi.org/10.1016/j.colsurfb.2010.10.019

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The investigation is performed under the umbrella of COST Action CA18238 (Ocean4Biotech) - “European transdisciplinary networking platform for marine biotechnology.” V.M. thanks Dr. Tamara Mengoni and Dr. Xiaofei Qin for their support for HPLC measurements. We thank Rosie Owens for her support in editing the document.

Funding

This work is supported by the EC project Nano3Bio (FP7-KBBE-2013-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktoria Milkova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milkova, V., Goycoolea, F.M. Encapsulation of caffeine in polysaccharide oil-core nanocapsules. Colloid Polym Sci 298, 1035–1041 (2020). https://doi.org/10.1007/s00396-020-04653-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04653-0

Keywords

Navigation