Skip to main content
Log in

Influence of chain structure on crystal polymorphism of poly(lactic acid). Part 2. Effect of molecular mass on the crystal growth rate and semicrystalline morphology

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The influence of molecular parameters on the crystallization kinetics and α/α ′-crystal polymorphism of poly(lactic acid) (PLA) was analyzed. Previous studies indicated that the content of l- and d-lactic acid affects both the crystallization rate and the formation of α- and α′- crystals of PLA. This preliminary investigation has now been completed by analysis of the influence of the chain length on the growth rate of the α- and α′-polymorphs. A series of linear PLA grades with molecular masses ranging from 60 to almost 600 kDa, and containing up to 3 wt.% d-lactic acid was investigated. Independent of the copolymer composition, an increase of the molecular mass leads to a lower maximum crystallization rate but does not affect the α/α′-crystal polymorphism of PLA upon melt crystallization, at least for the analyzed range of molecular mass and d-lactic acid content. Lower molecular mass causes an initial growth of hedritic superstructures, which gradually transform into spherulites. The d-lactic acid content also affects the morphology, as hedrites are observed also at higher molecular mass. Highly irregular and fibrillar structures grow in PLA grades with low stereoregularity and high molecular mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mehta R, Kumar V, Bhunia H, Upadhyay SN (2005) Synthesis of poly(lactic acid): a review. Polym Rev 45:325–349

    Google Scholar 

  2. Saeidlou S, Huneault MA, Li H, Park CB (2012) Poly(lactic acid) crystallization. Progr Polym Sci 37:1657–1677

    Article  CAS  Google Scholar 

  3. Urayama H, Kanamori T, Kimura Y (2001) Microstructure and thermomechanical properties of glassy polylactides with different optical purity of the lactate units. Macromol Mater Eng 286:705–713

    Article  CAS  Google Scholar 

  4. Garlotta D (2001) A literature review of poly (lactic acid). J Polym Environ 9:63–84

    Article  CAS  Google Scholar 

  5. Nofar N, Park CB (2014) Poly (lactic acid) foaming. Prog Polym Sci 39:1721–1741

    Article  CAS  Google Scholar 

  6. Di Lorenzo ML, Rubino P, Luijkx R, Hélou M (2014) Influence of chain structure on crystal polymorphism of poly(lactic acid). Part 1: effect of optical purity of the monomer. Colloid Polym Sci 292:399–409

    Article  Google Scholar 

  7. Alemán C, Lotz B, Puiggalí J (2001) Crystal structure of the α-form of poly(l-lactide). Macromolecules 34:4795–801

    Article  Google Scholar 

  8. Sasaki S, Asakura T (2003) Helix distortion and crystal structure of the α form of poly(l-lactide). Macromolecules 36:8385–8390

    Article  CAS  Google Scholar 

  9. Pan P, Inoue Y (2009) Polymorphism and isomorphism in biodegradable polyesters. Prog Polym Sci 34:605–640

    Article  CAS  Google Scholar 

  10. Hoogsteen W, Postema AR, Pennings AJ, ten Brinke G (1990) Crystal structure, conformation, and morphology of solution-spun poly(l-lactide) fibers. Macromolecules 23:634–642

    Article  CAS  Google Scholar 

  11. Puiggalí J, Ikada Y, Tsuji H, Cartier L, Okihara T, Lotz B (2000) The frustrated structure of poly(l-lactide). Polymer 41:8921–8930

    Article  Google Scholar 

  12. Pan P, Zhu B, Kai W, Dong T, Inoue Y (2008) Effect of crystallization temperature on crystal modifications and crystallization kinetics of poly(l-lactide). J Appl Polym Sci 107:54–62

    Article  CAS  Google Scholar 

  13. Cartier L, Okihara T, Ikada Y, Tsuji H, Puiggalı J, Lotz B (2000) Epitaxial crystallization and crystalline polymorphism of polylactides. Polymer 41:8909–8919

  14. Marubayashi H, Asai S, Sumita M (2012) Complex crystal formation of poly(l-lactide) with solvent molecules. Macromolecules 45:1384–1397

    Article  CAS  Google Scholar 

  15. Cocca M, Androsch R, Righetti MC, Malinconico M, Di Lorenzo ML (2014) Conformationally disordered crystals and their influence on material properties: the cases of isotactic polypropylene, isotactic poly(1-butene), and poly(l-lactic acid). J Mol Struct 1078:114–132

    Article  CAS  Google Scholar 

  16. Zhang J, Tashiro K, Domb AJ, Tsuji H (2006) Confirmation of disorder α form of poly(l-lactic acid) by the X-ray fiber pattern and polarized IR/raman spectra measured for uniaxially-oriented samples. Macromol Symp 242:274–278

    Article  CAS  Google Scholar 

  17. Kawai T, Rahman N, Matsuba G, Nishida K, Kanaya T, Nakano M, Okamoto H, Kawada J, Usuki A, Honma N, Nakajima K, Matsuda M (2007) Crystallization and melting behavior of poly (l-lactic acid). Macromolecules 40:9463–9469

    Article  CAS  Google Scholar 

  18. Pan P, Kai W, Zhu B, Dong T, Inoue Y (2007) Polymorphous crystallization and multiple melting behavior of poly(l-lactide): molecular weight dependence. Macromolecules 40:6898–6905

    Article  CAS  Google Scholar 

  19. Zhang J, Duan Y, Sato H, Tsuji H, Noda I, Yan S, Ozaki Y (2005) Crystal modifications and thermal behavior of poly(l-lactic acid) revealed by infrared spectroscopy. Macromolecules 38:8012–8021

    Article  CAS  Google Scholar 

  20. Marubayashi H, Akaishi S, Akasaka S, Asai S, Sumita M (2008) Crystalline structure and morphology of poly(l-lactide) formed under high-pressure CO2. Macromolecules 41:9192–9203

    Article  CAS  Google Scholar 

  21. Wunderlich B, Grebowicz J (1984) Thermotropic mesophases and mesophase transitions of linear, flexible macromolecules. Adv Polym Sci 60:1–59

    Article  Google Scholar 

  22. Pan P, Yang J, Shan G, Bao Y, Weng Z, Cao A, Yazawa K, Inoue Y (2012) Temperature-variable FTIR and solid-state 13C NMR investigations on crystalline structure and molecular dynamics of polymorphic poly(l-lactide) and poly(l-lactide)/poly(d-lactide) stereocomplex. Macromolecules 45:189–197

    Article  CAS  Google Scholar 

  23. Di Lorenzo ML (2006) Calorimetric analysis of the multiple melting behavior of poly(l-lactic acid). J Appl Polym Sci 100:3145–3151

  24. Androsch R, Schick C, Di Lorenzo ML (2014) Melting of conformationally disordered crystals (α′-phase) of poly(l-lactic acid). Macromol Chem Phys 215:1134–1139

  25. Androsch R, Zhuravlev E, Schick C (2014) Solid-state reorganization, melting and melt-recrystallization of conformationally disordered crystals (α′-phase) of poly(l-lactic acid). Polymer 55:4932–4941

    Article  CAS  Google Scholar 

  26. Vasanthakumari R, Pennings AJ (1983) Crystallization kinetics of PLLA. Polymer 24:175–178

    Article  CAS  Google Scholar 

  27. Sarasua JR, Prud’homme RE, Wisniewski M, Le Borgne A, Spassky N (1998) Crystallization and melting behavior of polylactides. Macromolecules 31:3895–3905

    Article  CAS  Google Scholar 

  28. He Y, Fan Z, Hu Y, Wu T, Wei J, Li S (2007) DSC analysis of isothermal melt-crystallization, glass transition and melting behavior of poly(l-lactide) with different molecular weights. Eur Polym J 43:4431–4439

    Article  CAS  Google Scholar 

  29. Cocca M, Di Lorenzo ML, Malinconico M, Frezza V (2011) Influence of crystal polymorphism on mechanical and barrier properties of poly(l-lactic acid). Europ Polym J 47:1073–1080

  30. Di Lorenzo ML, Cocca M, Malinconico M (2011) Crystal polymorphism of poly(l-lactic acid) and its influence on thermal properties. Thermochim Acta 522:110–117

  31. Wunderlich B (1976) Macromolecular physics, Vol. 2: crystal nucleation, growth, annealing. Academic, New York

    Google Scholar 

  32. Fox TG, Flory PJ (1950) Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. J Appl Phys 21:581–591

    Article  CAS  Google Scholar 

  33. Urayama H, Moon SI, Kimura Y (2003) Microstructure and thermal properties of polylactides with different L- and D-unit sequences: importance of the helical nature of the l-sequenced segments. Macromol Mater Eng 288:137–143

    Article  CAS  Google Scholar 

  34. Pan P, Liang Z, Zhu B, Dong T, Inoue Y (2009) Blending effects on polymorphic crystallization of poly(l-lactide). Macromolecules 42:3374–3380

  35. Kobayashi J, Asahi T, Ichiki M, Okikawa A, Suzuki H, Watanabe T, Fukuda E, Shikinami Y (1995) Structural and optical properties of poly lactic acids. J Appl Phys 77:2957–2973

    Article  CAS  Google Scholar 

  36. Wunderlich B (1990) Thermal analysis. Academic, New York

    Google Scholar 

  37. Marand H, Xu J, Srinivas S (1998) Determination of the equilibrium melting temperature of polymer crystals: linear and nonlinear Hoffman–Weeks extrapolations. Macromolecules 31:8219–8229

    Article  CAS  Google Scholar 

  38. Righetti MC, Di Lorenzo ML (2012) Nonlinear determination of the equilibrium melting temperature from initial nonreorganized crystals of poly(3-hydroxybutyrate). Polym Eng Sci 52:2383–2390

    Article  CAS  Google Scholar 

  39. Mathot VBF (1994) The crystallization and melting region. In: Mathot VBF (ed) Calorimetry and thermal analysis of polymers. Hanser Publisher, Munich, pp 231–299

    Google Scholar 

  40. Bassett DC, Vaughan AS (1985) On the lamellar morphology of melt crystallized isotactic polystyrene. Polymer 26:717–725

    Article  CAS  Google Scholar 

  41. Silvestre C, Cimmino S, Di Lorenzo ML (1999) Crystallization of poly(1-butene)/hydrogenated oligocyclopentadiene blends. J Appl Polym Sci 71:1677–1690

    Article  CAS  Google Scholar 

  42. Kortaberria G, Marieta C, Jimeno A, Arruti P, Mondragon I (2006) Crystallization of poly(l-lactid acid) monitored by dielectric relaxation spectroscopy and atomic force microscopy. J Microsc 224:277–289

    Article  CAS  Google Scholar 

  43. Kalb B, Pennings AJ (1990) General crystallization behaviour of poly(l-lactic acid). Polymer 21:607–612

    Article  Google Scholar 

  44. Binsbergen FL, De Lange BGM (1968) Morphology of polypropylene crystallized from the melt. Polymer 9:23–40

    Article  CAS  Google Scholar 

  45. Lotz B, Wittman JC (1986) The molecular origin of lamellar branching in the α (monoclinic) form of isotactic polypropylene. J Polym Sci Polym Phys 24:1541–1558

    Article  CAS  Google Scholar 

  46. Lotz B, Wittmann JC, Lovinger A (1996) Structure and morphology of poly(propylenes): a molecular analysis. Polymer 37:4979–4992

    Article  CAS  Google Scholar 

  47. Gazzano M, Focarete ML, Riekel C, Scandola M (2004) Structural study of poly(l-lactic acid) spherulites. Biomacromolecules 5:553–558

    Article  CAS  Google Scholar 

  48. Wang X, Prud’homme RE (2011) Differences between stereocomplex spherulites obtained in equimolar and non-equimolar poly(l-lactide)/poly(d-lactide) blends. Macromol Chem Phys 212:691–698

  49. Schultz JM (2003) Self-induced field model for crystal twisting in spherulites. Polymer 44:433–441

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by the Deutsche Forschungsgemeinschaft (DFG) (Grant AN 212/20), by Total Petrochemicals Research Feluy, and by Italian National Research Council (CNR) Short-Term Mobility Program is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Laura Di Lorenzo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Lorenzo, M.L., Rubino, P., Immirzi, B. et al. Influence of chain structure on crystal polymorphism of poly(lactic acid). Part 2. Effect of molecular mass on the crystal growth rate and semicrystalline morphology. Colloid Polym Sci 293, 2459–2467 (2015). https://doi.org/10.1007/s00396-015-3709-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3709-2

Keywords

Navigation