Skip to main content

Advertisement

Log in

Formation of octacalcium phosphate by heterogeneous nucleation on a titania surface

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Biocompatibility of the surfaces of titanium dental implants can be improved by covering them with calcium phosphate crystals, which makes the surface bioreactive. Possibly the most effective bioreactive foreign material that improves osteointegration and adsorption/binding of extracellular proteins and structural proteins is crystalline octacalcium phosphate {2×[Ca4H(PO4)3·2.5H2O] or Ca8(HPO4)2(PO4)4·5H2O, OCP}. In this work the building up of OCP crystals on the surface of TiO2 anatase is examined in the process of heterogeneous nucleation from constant-composition solutions of CaCl2 and KH2PO4 at constant pH (pH 6.8) and ionic strength (I=0.05 M), in dense titania suspensions. Constant relative supersaturation with regard to the calcium phosphate formation was maintained by the controlled addition of the reagent solutions, according to the desired speed of crystallization. The surface saturation value of calcium ion adsorption was measured by detecting the pH decrease during CaCl2 addition in a separate experiment. The OCP crystallization was also conducted on the surface of an evaporated titanium layer, and on titanium metal disks. The surface of the disks was modified by the laser ablation method in order to increase the oxide layer thickness. Calcium phosphate crystals formed on the surface of the modified titanium disks, but not in an appreciable amount on the surface of the evaporated titanium layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lacefield WR (1999) Adv Dent Res 13:21

    CAS  PubMed  Google Scholar 

  2. Wang RR, Fenton A (1996) Prosthodontics 27:401

    CAS  Google Scholar 

  3. Kasuga T, Mizuno T, Watanabe M, Nogami M, Miinomi M (2001) Biomaterials 22:577

    Article  CAS  PubMed  Google Scholar 

  4. Wang CX, Chen ZO, Wang M, Lin ZY, Wang PL (2001) J Biomed Mater Res 55:587

    Article  CAS  PubMed  Google Scholar 

  5. de Groot K, Geesink R, Klein C (1987) J Biomed Mater Res 21:1375

    PubMed  Google Scholar 

  6. Ban S, Maruno S, Arimoto N, Harada A, Hasegawa J (1997) J Biomed Mater Res 36:9

    Article  CAS  PubMed  Google Scholar 

  7. Wu W, Nancollas GH (1997) Langmuir 13:861

    Article  CAS  Google Scholar 

  8. Combes C, Rey C, Fresche M (1998) Colloids Surf B 11:15

    Article  CAS  Google Scholar 

  9. Li P, Kangasniemi I, de Groot K (1994) J Am Ceram Soc 77:1307

    CAS  Google Scholar 

  10. Wu W, Nancollas GH (1998) J Colloid Interface Sci 199:206

    Article  CAS  Google Scholar 

  11. Areva S, Linden M (2003) Bioceram 15 Key Engi Mater 240:465

    Google Scholar 

  12. Shibata Y, Miyazaki T (2002) J Dent Res 81:841

    CAS  PubMed  Google Scholar 

  13. Pach L, Komarneni S (1999) Mater Res Bull 34:1859

    Article  CAS  Google Scholar 

  14. Feng QL, Cui FZ, Wang H, Kim TN, Kim JO (2000) J Cryst Growth 210:735

    Article  CAS  Google Scholar 

  15. Es-Soumi M, Zimehl R, Fisher-Brandies H (1999) Colloid Polym Sci 277:382

    Article  Google Scholar 

  16. Heughebaert JC, Zawacki SJ, Nancollas GH (1983) J Cryst Growth: 63:83

    Google Scholar 

  17. Liu XY (2000) Langmuir 16:7337

    Article  CAS  Google Scholar 

  18. (a) Thomson MB, Nancollas GH (1978) Science 200:1059; (b) Koutsoukos PG, Amjad Z, Tomson MB, Nancollas GH (1980) J Am Chem Soc 102:1553; (c) Amjad Z, Koutsouskos PG, Nancollas GH (1984) J Colloid Interface Sci 101:250

  19. James RO, Parks GA (1982) Surf Colloid Sci 12:119

    CAS  Google Scholar 

  20. Huang C-P, Stumm W, (1973) J Colloid Interface Sci 43:409

    Article  CAS  Google Scholar 

  21. Brown WE, Smith JP, Lehr JR, Fraizer AW (1962) Nature 196:1048

    CAS  Google Scholar 

  22. Gallardo-Amores JM, Armaroli T, Ramis G, Finocchio E, Busca G (1999) Appl Catal B 22:249

    Article  CAS  Google Scholar 

  23. Brown G (1980) In: Brindley GW, Brown G (eds) Crystal structures of clay minerals and their X-ray identification, Mineralogical Society, London, pp 361–411

  24. Bereznai M, Pelsőczi I, Tóth Z, Turzó K, Radnai M, Bor Z, Fazekas A (2003) Biomaterials 24:4197

    Article  Google Scholar 

Download references

Acknowledgement

The authors wish to thank the Hungarian Research Foundation OTKA for scientific support (project numbers F042715 and M036688).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márta Szekeres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szekeres, M., Fodor, G., Fazekas, A. et al. Formation of octacalcium phosphate by heterogeneous nucleation on a titania surface. Colloid Polym Sci 283, 587–592 (2005). https://doi.org/10.1007/s00396-004-1188-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-004-1188-y

Keywords

Navigation