Skip to main content
Log in

Effect of chemically inert particles on parameters and suppression of detonation in gases

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

An algorithm for calculating the parameters of a steady one-dimensional detonation wave in mixtures of a gas with chemically inert particles and estimating the detonation-cell size in such mixtures is proposed. The calculated detonation parameters and cell size in stoichiometric hydrogen-oxygen mixtures with W, Al2O3, and SiO2 particles are used to analyze the method of suppression of multifront gas detonation by injecting chemically inert particles ahead of the leading wave front. The ratio between the channel diameter and the detonation-cell size is used to estimate the limit of heterogeneous detonation in the mixtures considered. The minimum mass of particles and the characteristic cloud size necessary for detonation suppression are calculated. The effect of thermodynamic parameters of particles on the detonation suppression process is analyzed for the first time. Particles with a high specific heat and (if melting occurs) a high phase-transition heat are found to exert the most pronounced effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Borisov, B. E. Gel’fand, S. A. Gubin, and S. M. Kogarko, “Effect of inert solid particles on detonation in a combustible gas mixture,” Combust., Expl., Shock Waves, 11, No. 6, 774–777 (1975).

    Article  Google Scholar 

  2. R. Bouchet and P. Laffitte, “L’extinction des ondes par les substances pulverisees,” C. R. Akad. Sci., 246, 1858–1861 (1958).

    Google Scholar 

  3. P. Laffitte and R. Bouchet, “Suppression of explosion waves in gaseous mixtures by means of fine powders,” in: Proc. 7th Symp. (Int.) on Combustion, Butterworth, London (1959), p. 504.

  4. Z. Chen, B. Fan, and X. Jiang, “Suppression effects of powder suppressant on the explosions of oxy hydrogen gas,” J. Loss Prevent. Proc. Ind., 19, 648–655 (2006).

    Article  Google Scholar 

  5. Yu. A. Nikolaev, A. A. Vasil’ev, and V. Yu. Ul’yanitskii, “Gas detonation and its application in engineering and technologies (review),” Combust., Expl., Shock Waves, 39, No. 4, 382–410 (2003).

    Article  Google Scholar 

  6. R. A. Strehlow, Combustion Fundamentals, McGraw-Hill, New York (1985).

    Google Scholar 

  7. M. A. Nettleton, Gaseous Detonations, Their Nature, Effects and Control, Chapter 8, Chapman and Hall, London-New York (1987).

    Google Scholar 

  8. A. A. Vasil’ev, V. V. Mitrofanov, and M. E. Topchiyan, “Detonation waves in gases,” Combust., Expl., Shock Waves, 23, No. 5, 605–623 (1987).

    Article  Google Scholar 

  9. A. V. Fedorov and I. A. Fedorchenko, “Computation of dust lifting behind a shock wave sliding along the layer. Verification of the model,” Combust., Expl., Shock Waves, 41, No. 3, 336–345 (2005).

    Article  Google Scholar 

  10. M. Krasnyansky, “Prevention and suppression of explosions in gas-air and dust-air mixtures using powder aerosol-inhibitor,” J. Loss Preven. Proc. Ind., 19, 729–735 (2006).

    Article  Google Scholar 

  11. I. A. Bedarev, Yu. A. Gosteev, and A. V. Fedorov, “Shock-wave-initiated lifting of particles from a cavity,” J. Appl. Mech. Tech. Phys., 48, No. 1, 17–26 (2007).

    Article  ADS  Google Scholar 

  12. Z. Chen and B. Fan, “Flame propagation through aluminium particle cloud in a combustion tube,” J. Loss Preven. Proc. Ind., 18, 13–19 (2005).

    Article  Google Scholar 

  13. M. Hattwig and H. Steen, Handbook of Explosion Prevention and Protection, Wiley-VCH Verlag GmbH & Co. KgaA, Weinheim (2004).

    Book  Google Scholar 

  14. P. Arpentinier, F. Cavani, and F. Trifiro, The Technology of Catalytic Oxidations. Safety Aspects, Vol. 2, Editions TECHNIP, Paris (2001).

    Google Scholar 

  15. R. Siwek and P. E. Moore, “New development in explosion suppression,” in: Proc. 8th Int. Symp. on Loss Prevention and Safety Promotion in the Process Industries, Vol. 1, Antwerp, Belgium (1995), pp. 539–550.

    Google Scholar 

  16. Kidde UTC Fire&Security Company, http://www.kiddeglobal.com.

  17. ATEX Explosion Protection L. P., http://www.atexus.com.

  18. P. E. Moore and R. Siwek, “Explosion suppression overview,” in: Proc. 9th Intern. Symp. on Loss Prevention and Safety Promotion in the Process Industries, Barcelona, Spain (1998).

  19. F. Zhang, P. A. Thibault, and S. B. Murray, “Transition from deflagration to detonation in an end multiphase slug,” Combust. Flame, 114, 13–25 (1998).

    Article  Google Scholar 

  20. C. W. Kauffmann, P. Wolanski, A. Arisoy, P. R. Adams, B. N. Maker, and J. A. Nicholls, “Dust, hybrid and dusty detonations,” AIAA Prog. Astronaut. Aeronaut., 94, 221–239 (1984).

    Google Scholar 

  21. P. Wolanski, J. C. Liu, C. W. Kauffmann, J. A. Nicholls, and M. Sichel, “The effects of inert particles on methane-air detonations,” Arch. Combust., 8, No. 1, 15–32 (1988).

    Google Scholar 

  22. J. Dong, B. Fan, B. Xie, and J. Ye, “Experimental investigation and numerical validation of explosion suppression by inert particles in large-scale duct,” Proc. Combust. Inst., 30, 2361–2368 (2005).

    Article  Google Scholar 

  23. M. Wolinski and P. Wolanski, “Gaseous detonation processes in presence of inert particles,” Arch. Combust., 7, Nos. 3–4, 353–370 (1987).

    Google Scholar 

  24. A. V. Fedorov and V. M. Fomin, “Detonation of the gas mixtures with inert solid particles,” in: Proc. IUTAM Symp. on Combustion in Supersonic Flows (1997), pp. 187–191.

  25. Yu. V. Kazakov, A. V. Fedorov, and V. M. Fomin, “Normal detonation regimes in relaxing media,” Combust., Expl., Shock Waves, 25, No. 1, 109–116 (1989).

    Article  Google Scholar 

  26. E. Loth, S. Sivier, and J. Baum, “Dusty detonation simulations with adaptive unstructured finite elements,” AIAA J., 35, 1018–1024 (1997).

    Article  MATH  ADS  Google Scholar 

  27. Y. Ju and C. K. Law, “Propagation and quenching of detonation waves in particle laden mixtures,” Combust. Flame, 129, 356–364 (2002).

    Article  Google Scholar 

  28. M. V. Papalexandris, “Numerical simulation of detonations in mixtures of gases and solid particles,” J. Fluid Mech., 507, 95–142 (2004).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. M. V. Papalexandris, “Influence of inert particles on the propagation of multidimensional detonation waves,” Combust. Flame, 141, 216–228 (2005).

    Article  Google Scholar 

  30. A. G. Kutushev and O. N. Pichugin, “Numerical investigation of the process of interrupting the detonation wave propagation in monofuel gas suspensions using an inert particle layer,” Combust., Expl., Shock Waves, 29, No. 2, 215–222 (1993).

    Article  Google Scholar 

  31. A. A. Borisov and B. E. Gel’fand, “On calculating parameters of detonation waves in gases and two-phase systems,” Fiz. Goreniya Vzryva, 6, No. 2, 186–195 (1970).

    Google Scholar 

  32. Yu. A. Nikolaev and D. V. Zak, “Agreement of models of chemical reactions in gases with the second law of thermodynamics,” Combust., Expl., Shock Waves, 24, No. 4, 461–463 (1988).

    Article  Google Scholar 

  33. P. A. Fomin and A. V. Trotsyuk, “An approximate calculation of the isentrope of a gas in chemical equilibrium,” Combust., Expl., Shock Waves, 31, No. 4, 455–458 (1995).

    Article  Google Scholar 

  34. A. V. Trotsyuk, “Numerical simulation of the structure of two-dimensional gaseous detonation of an H2-O2-Ar mixture,” Combust., Expl., Shock Waves, 35, No. 5, 549–558 (1999).

    Article  Google Scholar 

  35. S. A. Zhdan, V. V. Mitrofanov, and A. I. Sychev, “Reactive impulse from the explosion of a gas mixture in a semiinfinite space,” Combust., Expl., Shock Waves, 30, No. 5, 657–663 (1994).

    Article  Google Scholar 

  36. P. A. Fomin, K. Mitropetros, and H. Hieronymus, “Approximate model of chemical equilibrium in heterogeneous gas-particles mixtures,” in: D. Bradley et al. (eds.), Proc. 4th Int. Seminar on Fire and Explosion Hazards, FireSERT, University of Ulster, UK (2004), pp. 219–228.

    Google Scholar 

  37. A. A. Vasil’ev and Yu. A. Nikolaev, “Model of the nucleus of a multifront gas detonation,” Combust., Expl., Shock Waves, 12, No. 5, 667–674 (1976).

    Article  Google Scholar 

  38. A. A. Vasil’ev, Yu. A. Nikolaev, and V. Yu. Ul’yanitskii, “Analysis of the cell parameters of a multifront gas detonation,” Combust., Expl., Shock Waves, 13, No. 3, 338–341 (1977).

    Article  Google Scholar 

  39. A. A. Vasil’ev, M. E. Topchiyan, and V. Yu. Ul’yanitskii, “Effect of initial temperature on gas-detonation parameters,” Combust., Expl., Shock Waves, 15, No. 6, 815–817 (1979).

    Article  Google Scholar 

  40. V. P. Glushko (ed.), Thermodynamic Properties of Individual Substances [in Russian], Vol. 2, Izd. Akad. Nauk SSSR, Moscow (1962).

    Google Scholar 

  41. V. P. Glushko (ed.), Thermal Constants of Substances [in Russian], VINITI, Moscow (1965–1982).

    Google Scholar 

  42. D. R. Stull and H. Prohet, The Janaf Thermochemical Tables, 2nd ed., NSRDS-NBS-37 (1971).

  43. Yu. A. Nikolaev and D. V. Zak, “Quasi-one-dimensional model of self-sustaining multifront gas detonation with losses and turbulence taken into account,” Combust., Expl., Shock Waves, 25, No. 2, 225–232 (1989).

    Article  Google Scholar 

  44. K. Mitropetros, P. A. Fomin, and H. Hieronymus, “Behavior of the surface of a bubbly liquid after detonation wave impact,” Exp. Fluid., 40, No. 3, 431–441 (2006).

    Article  Google Scholar 

  45. I. K. Kikoin (ed.), Tables of Physical Quantities [in Russian], Atomizdat, Moscow (1976).

    Google Scholar 

  46. D. R. Lide (ed.), CRC Handbook of Chemistry and Physics, CRC Press (1994).

  47. Yu. A. Nikolaev and M. E. Topchiyan, “Analysis of equilibrium flows in detonation waves in gases,” Combust., Expl., Shock Waves, 13, No. 3, 327–337 (1977).

    Article  Google Scholar 

  48. A. A. Vasil’ev, “Gaseous detonation and its application in technique and technology,” in: Proc. The European Combustion Meeting, Belgium, Louvain-la-Neuve, CDROM (2003).

    Google Scholar 

  49. D. R. White, “Density induction times in very lean mixtures of D2, H2, C2H2 and C2H4 with O2,” in: Proc. XI Symp. (Int.) on Combustion, Academic Press, Pittsburgh (1967), pp. 147–154.

    Google Scholar 

  50. Yu. A. Nikolaev and O. P. Gaponov, “On gas detonation limits,” Combust., Expl., Shock Waves, 31, No. 3, 395–400 (1995).

    Article  Google Scholar 

  51. K. Terao and H. Kobayashi, “Experimental study on suppression of detonation waves,” Jap. J. Appl. Phys., 21, No. 11, 1577–1579 (1982).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Fomin.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 45, No. 3, pp. 77–88, May–June, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fomin, P.A., Chen, J.R. Effect of chemically inert particles on parameters and suppression of detonation in gases. Combust Explos Shock Waves 45, 303–313 (2009). https://doi.org/10.1007/s10573-009-0040-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-009-0040-6

Key words

Navigation