Skip to main content
Log in

Computational Analysis of Injection-Velocity Effects on Dynamic Parameters of Unconfined Fuel-Vapor Clouds

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

A computational investigation is performed to study the effects of injection velocity on the main dynamic parameters of the fuel cloud released into the open atmosphere. The volume, shape, and growth rate of the cloud, turbulence intensity, as well as the distribution of fuel concentration, temperature gradient, and self-ignition induction time are the most important parameters determining the mode of combustion that propagates through the cloud. A modified KIVA-based program is employed to fulfill the calculations. Systems of equations are solved by a finite-volume method. The k-ɛ model and discrete droplet model are applied for modeling gas-phase turbulence and liquid spray, respectively. The fuel-injection velocity is shown to have a major effect on turbulence intensity and uniformity of the cloud. With increasing injection velocity, the detonable part of the cloud rotates sooner and faster, and there is less time for ignition. A comparison with experimental results is performed for validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. W. Glass, “Far-field dispersal modeling for fuel-air explosive devices,” Sandia National Laboratories Report No. SAND90-0528 (May 1990).

  2. D. R. Gardner, “Near-field dispersal modeling for liquid fuel-air explosives,” Sandia National Laboratories Report No. SAND90-0686 (July 1990).

  3. A. A. Amsden, P. J. O'Rourke, and T. D. Butler, “KIVA-II: a computer program for chemically reactive flows with sprays,” Los Alamos National Laboratory Report No. LA-11560-MS (May 1989).

  4. G. M. Makhviladze, J. P. Roberts, and S. E. Yakush, “Combustion of two-phase hydrocarbon fuel clouds released into the atmosphere,” Combust. Flame, 118, 583–605 (1999).

    Article  Google Scholar 

  5. W. A. Sirignano, Fluid Dynamics and Transport of Droplets and Sprays, Cambridge Univ. Press, UK (1999).

    Google Scholar 

  6. V. I. Alekseev, S. B. Dorofeev, V. P. Sidorov, and B. B. Chaivanov, “Experimental study of large scale unconfined fuel spray detonations,” Prog. Astronaut. Aeronaut., 154, 95–104 (1993).

    Google Scholar 

  7. A. Ungut and P. J. Shuff, “Deflagration to detonation transition from a venting pipe,” Combust. Sci. Technol., 63, 75–87 (1989).

    Google Scholar 

  8. A. M. Khokhlov, E. S. Oran, and G. O. Thomas, “Numerical simulation of deflagration to detonation transition: The role of shock-flame interactions in turbulent flames,” Combust. Flame, 111, 323–339 (1999).

    Article  Google Scholar 

  9. I. O. Moen, “Transition to detonation in fuel-air explosive clouds,” J. Hazard. Mater., 33, 159–192 (1993).

    Article  Google Scholar 

  10. Ya. B. Zel'dovich, V. B. Librovich, G. M. Makhviladze, and G. I. Sivashinsky, “On the development of detonation in a non-uniformly preheated gas,” Astronaut. Acta, 15, Nos. 5/6, 313–321 (1970).

    Google Scholar 

  11. A. N. Khokhlov, E. S. Oran, and J. C. Wheeler, “A theory of deflagration to detonation transition in unconfined flames,” Combust. Flame, 111, 323–339 (1999).

    Article  Google Scholar 

  12. A. M. Bartenev and B. E. Gelfand, “Spontaneous initiation of detonations,” Prog. Energ Combust. Sci., 26, 29–55 (2000).

    Article  Google Scholar 

  13. G. M. Makhviladze and D. I. Rogatykh, “Non-uniformities in initial temperature and concentration as a cause of explosive chemical reactions in combustible gases,” Combust. Flame, 87, 347–356 (1991).

    Article  Google Scholar 

  14. W. B. Benedick, R. Knystautas, J. H. S. Lee, and S. R. Tieszen, “Detonation of unconfined large scale fuel spray-air clouds,” Prog. Astronaut. Aeronaut., 133, 297–310 (1991).

    Google Scholar 

  15. G. O. Thomas and A. Jones, “Some observations of the jet initiation of detonation,” Combust. Flame, 120, 392–398 (2000).

    Article  Google Scholar 

  16. Y. Lizhong, F. Weicheng, Z. Xiaodong, and W. Qing'an, “Analysis of fire and explosion hazards of some hydrocarbon-air mixtures,” J. Hazardous Mater., A84, 123–131 (2001).

    Article  Google Scholar 

  17. M. M. Doustdar, M. Hosseinalipour, and K. Mazaheri, “Numerical study of a two-phase unconfined fuel-air cloud characteristics to consider its detonability,” in: Proc. of the Tenth Annual Conf. of the CFD Society of Canada (2002), pp. 204–210.

  18. M. M. Doustdar, K. Mazaheri, and M. Hosseinalipour, “Numerical study of ground effect on the detonability characteristics of unconfined two-phase clouds,” in: Proc. of 11th Annual Conf. of the CFD Society of Canada (2003), pp. 399–406.

  19. J. C. Liu, S. S. Xue, G. S. Zhu, et al., “Experimental and numerical study of explosive dispersal and fuel-air cloud,” in: Proc. of the Colloquium on Gas, Vapor, Hybrid and Fuel-Air Explosions, Schaumburg, Illinois (1998), pp. 341–354.

  20. A. A. Amsden, “KIVA-3: a KIVA Program with block-structured mesh for complex geometries,” Los Alamos National Laboratory Report No. LA-12503-MS (March 1993).

  21. D. Bjerketvedt, J. R. Bakke, and K. V. Wingerden, “Gas explosion handbook,” J. Hazard. Mater., 52, 1–150 (1997).

    Article  Google Scholar 

  22. A. E. Cote, Fire Protection Handbook, R. R. Donnelly and Sons, USA (2000), pp. 4.59–4.69

    Google Scholar 

  23. V. V. Koren'kov and A. S. Obukhov, “Effect of the location of the detonation initiation point and the position of the air-fuel cloud on explosion-field parameters,” Combust., Expl., Shock Waves, 37, No.6, 688–697 (2001).

    Google Scholar 

  24. C. R. Ferguson and A. T. Kirkpatrick, Internal Combustion Engines, John Wiley and Sons, New York (1999), pp. 256–259.

    Google Scholar 

  25. C. L. Yaws, Chemical Properties Handbook, McGraw-Hill, New York (1999), pp. 557–581.

    Google Scholar 

  26. T. A. Davletshina and N. P. Cheremisino., Fire and Explosion Hazards Handbook of Industrial Chemicals, Noyes Publ., USA (1998), pp. 180–183.

    Google Scholar 

  27. SAE Handbook, Vol. 3, Society of Automotive Engineers, USA (1992), pp. 23.54–23.64.

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 41, No. 5, pp. 29–40, September–October, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doustdar, M.M., Mazaheri, K. & Hosseinalipour, M. Computational Analysis of Injection-Velocity Effects on Dynamic Parameters of Unconfined Fuel-Vapor Clouds. Combust Explos Shock Waves 41, 510–520 (2005). https://doi.org/10.1007/s10573-005-0064-5

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-005-0064-5

Key words

Navigation