Skip to main content
Log in

Effects of temperature and moisture on the ignition behavior of silane release into air

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The effects of silane temperature and ambient moisture on the ignition behavior are considered. The critical velocity for delayed ignition is determined for different silane temperatures and moisture contents in ambient air. The logarithm of the critical exit velocity is found to be inversely proportional to silane temperature. It is also observed that moisture in air has a strong inhibiting effect on silane autoignition in air. From a safety perspective, it is concluded that prompt ignition of silane is favored in a high-temperature and low-humidity environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Koda, “Kinetic Aspects of Oxidation and Combustion of Silane and Related Compounds,” Prog. Energy Combust. Sci. 18, 513–528 (1992).

    Article  Google Scholar 

  2. E. Y. Ngai, K. P. P. Huang, J. R. Chen, et al., “Field Tests of Release, Ignition and Explosion from Silane Cylinder Valves,” Process Saf. Prog. 26, 265–282 (2007).

    Article  Google Scholar 

  3. J.-R. Chen, H. Y. Tsai, S. W. Wang, et al., “Ignition Characteristics of Steady and Dynamic Release of Pure Silane into Air,” Fiz. Goreniya Vzryva 46 (4), 25–35 (2010) [Combust., Expl., Shock Waves 46 (4), 391–399 (2010)].

    Google Scholar 

  4. H. Y. Tsai, S. W. Wang, S. Y. Wu, et al., “Experimental Studies on the Ignition Behavior of Pure Silane Released into Air,” J. Loss Prevent. Proc. Ind. 23, 170–177 (2010).

    Article  Google Scholar 

  5. L. G. Britton, “Combustion Hazards of Silane and Its Chlorides,” Plant/Operations Prog. 9, 16–38 (1990).

    Article  Google Scholar 

  6. J. R. Hartman, J. Famil-Ghiriha, M. A. Ring, and H. E. O’Neal, “Stoichiometry and Possible Mechanism of SiH4–O2 Explosions,” Combust. Flame 68, 43–56 (1987).

    Article  Google Scholar 

  7. S. Kondo, K. Tokuhashi, H. Nagai, M. Iwasaka, and M. Kaise, “Experimental Study of Spontaneous Ignition Limit of Oxygen-Lean Silane Mixtures,” Combust. Flame 97, 296–300 (1994).

    Article  Google Scholar 

  8. S. Kondo, K. Tokuhashi, H. Nagai, et al., “Ab initio Energetic Calculations of Elementary Reactions Relevant to Low-Temperature Silane Oxidation by Gaussian-2 Theory,” J. Phys. Chem. A 101, 6015–6022 (1997).

    Article  Google Scholar 

  9. K. Tokuhashi, A. Takahashi, and S. Kondo, “Spontaneous Ignition of Silane: Effect of Water,” in 36th Symp. (Japanese) on Combustion (Sapporo, Japan, 1998), pp. 761–763 [in Japanese].

    Google Scholar 

  10. S. Kondo, K. Tokuhashi, A. Takahashi, and M. Kaise, “A Numerical Study of Low Temperature Silane Combustion,” Combust. Sci. Technol. 159, 391–406 (2000).

    Article  Google Scholar 

  11. M. T.Donovan, X. He, B. Zigler, et al., “Experimental Investigation of Silane Combustion and Particle Nucleation using a Rapid-Compression Facility,” Combust. Flame 141, 360–370 (2005).

    Article  Google Scholar 

  12. T. S. Yang, C. H.Wu, and C. F. Yeh, “Analysis of Moisture Purge in High Purity Gas Distribution Systems,” Int. J. Heat Mass Transfer 49, 1753–1759 (2006).

    Article  Google Scholar 

  13. G. Von Elbe and B. Lewis, “The Steady-State Rate of a Chain Reaction for the Case of Chain Destruction at Walls of Varying Efficiencies,” J. Amer. Chem. Soc. 59, 970–975 (1937).

    Article  Google Scholar 

  14. R. Seiser and K. Seshadri, “The Influence of Water on Extinction and Ignition of Hydrogen and Methane Flames,” Proc. Combust. Inst. 30, 407–414 (2005).

    Article  Google Scholar 

  15. E. Y. Ngai, R. Fuhrhop, J. R. Chen, et al., “CGA G-13 Large-Scale Silane Release Tests—Part II. Unconfined Silane–Air Explosion,” J. Loss Prevent. Proc. Ind. 36, 488–496 (2015).

    Article  Google Scholar 

  16. E. Y. Ngai, R. Fuhrhop, J. R. Chen, et al., “CGA G-13 Large-Scale Silane Release Tests—Part I. Silane Jet Flame Impingement Tests and Thermal Radiation Measurement,” J. Loss Prevent. Proc. Ind. 36, 478–487 (2015).

    Article  Google Scholar 

  17. Yu. V. Zakharova and A. V. Fedorov, “Calculation of Outflow and Ignition of Silane Jet,” in Abstracts of XXIV All-Russia Workshop, November 11–13, 2015, Novosibirsk (Parallel, Novosibirsk, 2015), pp. 72–73.

    Google Scholar 

  18. A. V. Fedorov and I. A. Fedorchenko, “Calculation of Outflow of Subsonic Silane Jet in flooded area,” in Dynamics of Multiphase Media, Proc. XIII All-Russia Workshop, October 8–10, 2013, Novosibirsk, Ed. by V. M. Fomin and A. V. Fedorov (Parallel, Novosibirsk, 2013), pp. 153–156.

    Google Scholar 

  19. A. V. Fedorov and Yu. V. Zakharova, “Silane Jet Release into Ambient Space,” Fiz. Goreniya Vzryva 53 (2), 31–38 (2017) [Combust., Expl., Shock Waves 53 (2), 149–156 (2017)].

    Google Scholar 

  20. P. A. Fomin, A. V. Fedorov, and J.-R. Chen, “Calculation of Detonation Characteristics of Silane–Air Mixtures,” in Proc. of the 11th Int. Symp. on Hazards, Prevention, and Mitigation of Industrial Explosions, Dalian, China, July 24–29, 2016, Ed. by Wei Gao (Dalian Univ. of Technol. Electr. and Audio-Visual Press, 2016), pp. 59–63.

    Google Scholar 

  21. D. A. Tropin and A. V. Fedorov, “Physicomathematical Modeling of Ignition and Combustion of Silane in Transient and Reflected ShockWaves,” Fiz. Goreniya Vzryva 51 (4), 37–45 (2015) [Combust., Expl., Shock Waves 51 (4), 431–438 (2015)].

    Google Scholar 

  22. A. V. Fedorov, P. A. Fomin, D. A. Tropin, and J.-R. Chen, “Modeling of Explosion Hazard and Explosion Mitigation in Silane–Air Mixtures,” Izv. Vyssh. Uchebn. Zaved., Stroit., Nos. 9/10, 108–125 (2014).

    Google Scholar 

  23. D. A. Tropin and A. V. Fedorov, “Ignition Limits of Silane–Air Mixtures,” in Proc. of the 10th Int. Symp. on Hazards, Prevention, and Mitigation of Industrial Explosions, Dalian, China, July 24–29, 2016, Ed. by Wei Gao (Dalian Univ. of Technol. Electr. Audio-Visual Press, 2016), pp. 1127–1138.

    Google Scholar 

  24. D. A. Tropin and A. V. Fedorov, “Calculation of Flammability Limits of Silane–Oxygen Mixtures,” Fiz. Goreniya Vzryva 52 (1), 46–51 (2016) Combust., Expl., Shock Waves 52 (1), 40–44 (2016)].

    Google Scholar 

  25. P. A. Fomin, A. V. Fedorov, and J.-R. Chen, “Control of Explosions in Silane–Air Mixtures by Means of Chemically Inert Microparticles,” in Proc. of the 10th Int. Symp. on Hazards, Prevention and Mitigation of Industrial Explosions, Bergen, Norway, June 10–14, 2014, Ed. by T. Skjold, R. K. Eckhoff, and K. van Wingerden (GexCon AS, Bergen, 2014), pp. 951–958.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.-Yu. Tsai.

Additional information

Original Russian Text © H.-Yu. Tsai, H.-L. Hung, S-Y. Wu, Ch.-W. Ku, J.-R. Chen, P.A. Fomin, A.V. Fedorov.

Published in Fizika Goreniya i Vzryva, Vol. 53, No. 3, pp. 33–41, May–June, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, HY., Hung, HL., Wu, SY. et al. Effects of temperature and moisture on the ignition behavior of silane release into air. Combust Explos Shock Waves 53, 276–282 (2017). https://doi.org/10.1134/S0010508217030042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508217030042

Keywords

Navigation