Skip to main content

Advertisement

Log in

In Vitro and In Vivo Efficacy of AZD3965 and Alpha-Cyano-4-Hydroxycinnamic Acid in the Murine 4T1 Breast Tumor Model

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Monocarboxylate transporter 1 (MCT1) represents a potential therapeutic target in cancer. The objective of this study was to determine the efficacy of AZD3965 (a specific inhibitor of MCT1) and α-cyano-4-hydroxycinnamic acid (CHC, a nonspecific inhibitor of MCTs) in the murine 4T1 tumor model of triple-negative breast cancer (TNBC). Expression of MCT1 and MCT4 in 4T1 and mouse mammary epithelial cells were determined by Western blot. Inhibition of MCT1-mediated l-lactate uptake and cellular proliferation by AZD3965 and CHC was determined. Mice bearing 4T1 breast tumors were treated with AZD3965 100 mg/kg i.p. twice-daily or CHC 200 mg/kg i.p. once-daily. Tumor growth, metastasis, intra-tumor lactate concentration, immune function, tumor MCT expression, and concentration-effect relationships were determined. AZD3965 and CHC inhibited cell growth and l-lactate uptake in 4T1 cells. AZD3965 treatment resulted in trough plasma and tumor concentrations of 29.1 ± 13.9 and 1670 ± 946 nM, respectively. AZD3965 decreased the tumor proliferation biomarker Ki67 expression, increased intra-tumor lactate concentration, and decreased tumor volume, although tumor weight was not different from untreated controls. CHC had no effect on tumor volume and weight, or intra-tumor lactate concentration. AZD3965 treatment reduced the blood leukocyte count and spleen weight and increased lung metastasis, while CHC did not. These findings indicate AZD3965 is a potent MCT1 inhibitor that accumulates to high concentrations in 4T1 xenograft tumors, where it increases tumor lactate concentrations and produces beneficial effects on markers of TNBC; however, overall effects on tumor growth were minimal and lung metastases increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

MCTs:

Monocarboxylate transporters

TNBC:

Triple-negative breast cancer

CD147:

Basigin

GLUT1:

Glucose transporter 1

CHC:

Alpha-cyano-4-hydroxycinnamic acid

References

  1. Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–14.

    CAS  PubMed  Google Scholar 

  2. Doyen J, Trastour C, Ettore F, Peyrottes I, Toussant N, Gal J, et al. Expression of the hypoxia-inducible monocarboxylate transporter MCT4 is increased in triple negative breast cancer and correlates independently with clinical outcome. Biochem Biophys Res Commun. 2014;451(1):54–61.

    CAS  PubMed  Google Scholar 

  3. Halestrap AP, Meredith D. The SLC16 gene family-from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Archiv. 2004;447(5):619–28.

    CAS  PubMed  Google Scholar 

  4. Morris ME, Felmlee MA. Overview of the proton-coupled MCT (SLC16A) family of transporters: characterization, function and role in the transport of the drug of abuse gamma-hydroxybutyric acid. AAPS J. 2008;10(2):311–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Pinheiro C, Reis RM, Ricardo S, Longatto-Filho A, Schmitt F, Baltazar F. Expression of monocarboxylate transporters 1, 2, and 4 in human tumours and their association with CD147 and CD44. J Biomed Biotechnol. 2010;2010:427694.

    PubMed  PubMed Central  Google Scholar 

  6. Pertega-Gomes N, Vizcaino JR, Miranda-Goncalves V, Pinheiro C, Silva J, Pereira H, et al. Monocarboxylate transporter 4 (MCT4) and CD147 overexpression is associated with poor prognosis in prostate cancer. BMC Cancer. 2011;11:312.

    PubMed  PubMed Central  Google Scholar 

  7. Pinheiro C, Sousa B, Albergaria A, Paredes J, Dufloth R, Vieira D, et al. GLUT1 and CAIX expression profiles in breast cancer correlate with adverse prognostic factors and MCT1 overexpression. Histol Histopathol. 2011;26(10):1279–86.

    CAS  PubMed  Google Scholar 

  8. Hamdan L, Arrar Z, Al Muataz Y, Suleiman L, Negrier C, Mulengi JK, et al. Alpha cyano-4-hydroxy-3-methoxycinnamic acid inhibits proliferation and induces apoptosis in human breast cancer cells. PLoS One. 2013;8(9):e72953.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Noble RA, Bell N, Blair H, Sikka A, Thomas H, Phillips N, et al. Inhibition of monocarboxyate transporter 1 by AZD3965 as a novel therapeutic approach for diffuse large B-cell lymphoma and Burkitt lymphoma. Haematologica. 2017;102(7):1247–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Polanski R, Hodgkinson CL, Fusi A, Nonaka D, Priest L, Kelly P, et al. Activity of the monocarboxylate transporter 1 inhibitor AZD3965 in small cell lung cancer. Clin Cancer Res. 2014;20(4):926–37.

    CAS  PubMed  Google Scholar 

  11. Bola BM, Chadwick AL, Michopoulos F, Blount KG, Telfer BA, Williams KJ, et al. Inhibition of monocarboxylate transporter-1 (MCT1) by AZD3965 enhances radiosensitivity by reducing lactate transport. Mol Cancer Ther. 2014;13(12):2805–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Morais-Santos F, Granja S, Miranda-Goncalves V, Moreira AH, Queiros S, Vilaca JL, et al. Targeting lactate transport suppresses in vivo breast tumour growth. Oncotarget. 2015;6(22):19177–89.

    PubMed  PubMed Central  Google Scholar 

  13. Le Floch R, Chiche J, Marchiq I, Naiken T, Ilc K, Murray CM, et al. CD147 subunit of lactate/H+ symporters MCT1 and hypoxia-inducible MCT4 is critical for energetics and growth of glycolytic tumors. Proc Natl Acad Sci U S A. 2011;108(40):16663–8.

    PubMed  PubMed Central  Google Scholar 

  14. Nath K, Nelson DS, Heitjan DF, Leeper DB, Zhou R, Glickson JD. Lonidamine induces intracellular tumor acidification and ATP depletion in breast, prostate and ovarian cancer xenografts and potentiates response to doxorubicin. NMR Biomed. 2015;28(3):281–90.

    CAS  PubMed  Google Scholar 

  15. Van Hee VF, Labar D, Dehon G, Grasso D, Gregoire V, Muccioli GG, et al. Radiosynthesis and validation of (+/−)-[18F]-3-fluoro-2-hydroxypropionate ([18F]-FLac) as a PET tracer of lactate to monitor MCT1-dependent lactate uptake in tumors. Oncotarget. 2017;8(15):24415–28.

    PubMed  PubMed Central  Google Scholar 

  16. Sonveaux P, Vegran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN, et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest. 2008;118(12):3930–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Colen CB, Shen Y, Ghoddoussi F, Yu P, Francis TB, Koch BJ, et al. Metabolic targeting of lactate efflux by malignant glioma inhibits invasiveness and induces necrosis: an in vivo study. Neoplasia. 2011;13(7):620–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhao Z, Wu MS, Zou C, Tang Q, Lu J, Liu D, et al. Downregulation of MCT1 inhibits tumor growth, metastasis and enhances chemotherapeutic efficacy in osteosarcoma through regulation of the NF-kappaB pathway. Cancer Lett. 2014;342(1):150–8.

    CAS  PubMed  Google Scholar 

  19. Spencer TL, Lehninger AL. L-lactate transport in Ehrlich ascites-tumour cells. Biochem J. 1976;154(2):405–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Halestrap AP, Denton RM. Specific inhibition of pyruvate transport in rat liver mitochondria and human erythrocytes by alpha-cyano-4-hydroxycinnamate. Biochem J. 1974;138(2):313–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Guile SD, Bantick JR, Cheshire DR, Cooper ME, Davis AM, Donald DK, et al. Potent blockers of the monocarboxylate transporter MCT1: novel immunomodulatory compounds. Bioorg Med Chem Lett. 2006;16(8):2260–5.

    CAS  PubMed  Google Scholar 

  22. Curtis NJ, Mooney L, Hopcroft L, Michopoulos F, Whalley N, Zhong H, et al. Pre-clinical pharmacology of AZD3965, a selective inhibitor of MCT1: DLBCL, NHL and Burkitt’s lymphoma anti-tumor activity. Oncotarget. 2017;8(41):69219–36.

    PubMed  PubMed Central  Google Scholar 

  23. Izumi H, Takahashi M, Uramoto H, Nakayama Y, Oyama T, Wang KY, et al. Monocarboxylate transporters 1 and 4 are involved in the invasion activity of human lung cancer cells. Cancer Sci. 2011;102(5):1007–13.

    CAS  PubMed  Google Scholar 

  24. Wang H, Yang C, Doherty JR, Roush WR, Cleveland JL, Bannister TD. Synthesis and structure-activity relationships of pteridine dione and trione monocarboxylate transporter 1 inhibitors. J Med Chem. 2014;57(17):7317–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hong CS, Graham NA, Gu W, Espindola Camacho C, Mah V, Maresh EL, et al. MCT1 modulates cancer cell pyruvate export and growth of tumors that co-express MCT1 and MCT4. Cell Rep. 2016;14(7):1590–601.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Beloueche-Babari M, Wantuch S, Casals Galobart T, Koniordou M, Parkes HG, Arunan V, et al. MCT1 inhibitor AZD3965 increases mitochondrial metabolism, facilitating combination therapy and noninvasive magnetic resonance spectroscopy. Cancer Res. 2017;77(21):5913–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tao K, Fang M, Alroy J, Sahagian GG. Imagable 4T1 model for the study of late stage breast cancer. BMC Cancer. 2008;8:228.

    PubMed  PubMed Central  Google Scholar 

  28. Kaur P, Nagaraja GM, Zheng H, Gizachew D, Galukande M, Krishnan S, et al. A mouse model for triple-negative breast cancer tumor-initiating cells (TNBC-TICs) exhibits similar aggressive phenotype to the human disease. BMC Cancer. 2012;12:120.

    PubMed  PubMed Central  Google Scholar 

  29. Guan X, Bryniarski MA, Morris ME. In vitro and in vivo efficacy of the monocarboxylate transporter 1 inhibitor AR-C155858 in the murine 4T1 breast cancer tumor model. AAPS J. 2018;21(1):3.

    PubMed  PubMed Central  Google Scholar 

  30. Zhang Y, Schuetz JD, Elmquist WF, Miller DW. Plasma membrane localization of multidrug resistance-associated protein homologs in brain capillary endothelial cells. J Pharmacol Exp Ther. 2004;311(2):449–55.

    CAS  PubMed  Google Scholar 

  31. Heimburg J, Yan J, Morey S, Glinskii OV, Huxley VH, Wild L, et al. Inhibition of spontaneous breast cancer metastasis by anti-Thomsen-Friedenreich antigen monoclonal antibody JAA-F11. Neoplasia. 2006;8(11):939–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Del Prete E, Lutz TA, Scharrer E. Inhibition of glucose oxidation by alpha-cyano-4-hydroxycinnamic acid stimulates feeding in rats. Physiol Behav. 2004;80(4):489–98.

    PubMed  Google Scholar 

  33. Jain S, Zuka M, Liu J, Russell S, Dent J, Guerrero JA, et al. Platelet glycoprotein Ib alpha supports experimental lung metastasis. Proc Natl Acad Sci U S A. 2007;104(21):9024–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zimmerman M, Hu X, Liu K. Experimental metastasis and CTL adoptive transfer immunotherapy mouse model. J Vis Exp. 2010;45:2077.

  35. Guan X, Ruszaj D, Morris ME. Development and validation of a liquid chromatography tandem mass spectrometry assay for AZD3965 in mouse plasma and tumor tissue: application to pharmacokinetic and breast tumor xenograft studies. J Pharm Biomed Anal. 2018;155:270–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Guan X, Morris ME. Pharmacokinetics of the Monocarboxylate Transporter 1 Inhibitor AZD3965 in Mice: Potential Enterohepatic Circulation and Target-Mediated Disposition. Pharmaceutical research. 2019;37(1):5.

  37. Pinheiro C, Albergaria A, Paredes J, Sousa B, Dufloth R, Vieira D, et al. Monocarboxylate transporter 1 is up-regulated in basal-like breast carcinoma. Histopathology. 2010;56(7):860–7.

    PubMed  Google Scholar 

  38. Bao L, Haque A, Jackson K, Hazari S, Moroz K, Jetly R, et al. Increased expression of P-glycoprotein is associated with doxorubicin chemoresistance in the metastatic 4T1 breast cancer model. Am J Pathol. 2011;178(2):838–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sztalmachova M, Gumulec J, Raudenska M, Polanska H, Holubova M, Balvan J, et al. Molecular response of 4T1-induced mouse mammary tumours and healthy tissues to zinc treatment. Int J Oncol. 2015;46(4):1810–8.

    CAS  PubMed  Google Scholar 

  40. Morais-Santos F, Miranda-Goncalves V, Pinheiro S, Vieira AF, Paredes J, Schmitt FC, et al. Differential sensitivities to lactate transport inhibitors of breast cancer cell lines. Endocr Relat Cancer. 2014;21(1):27–38.

    CAS  PubMed  Google Scholar 

  41. Miranda-Goncalves V, Honavar M, Pinheiro C, Martinho O, Pires MM, Pinheiro C, et al. Monocarboxylate transporters (MCTs) in gliomas: expression and exploitation as therapeutic targets. Neuro-oncology. 2013;15(2):172–88.

    CAS  PubMed  Google Scholar 

  42. Voutouri C, Polydorou C, Papageorgis P, Gkretsi V, Stylianopoulos T. Hyaluronan-derived swelling of solid tumors, the contribution of collagen and cancer cells, and implications for cancer therapy. Neoplasia. 2016;18(12):732–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu M, Jin X, He X, Pan L, Zhang X, Zhao Y. Macrophages support splenic erythropoiesis in 4T1 tumor-bearing mice. PLoS One. 2015;10(3):e0121921.

    PubMed  PubMed Central  Google Scholar 

  44. Georgakopoulos-Soares I, Chartoumpekis DV, Kyriazopoulou V, Zaravinos A. EMT factors and metabolic pathways in cancer. Front Oncol. 2020;10:499.

    PubMed  PubMed Central  Google Scholar 

  45. Tasdogan A, Faubert B, Ramesh V, Ubellacker JM, Shen B, Solmonson A, et al. Metabolic heterogeneity confers differences in melanoma metastatic potential. Nature. 2020; 577(7788):115–120.

  46. Quanz M, Bender E, Kopitz C, Grunewald S, Schlicker A, Schwede W, et al. Preclinical efficacy of the novel monocarboxylate transporter 1 inhibitor BAY-8002 and associated markers of resistance. Mol Cancer Ther. 2018;17(11):2285–96.

    CAS  PubMed  Google Scholar 

  47. Serganova I, Rizwan A, Ni X, Thakur SB, Vider J, Russell J, et al. Metabolic imaging: a link between lactate dehydrogenase A, lactate, and tumor phenotype. Clin Cancer Res. 2011;17(19):6250–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Mehibel M, Ortiz-Martinez F, Voelxen N, Boyers A, Chadwick A, Telfer BA, et al. Statin-induced metabolic reprogramming in head and neck cancer: a biomarker for targeting monocarboxylate transporters. Sci Rep. 2018;8(1):16804.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was funded by the National Institute of Health National Institute on Drug Abuse (grant DA023223). X.G. was funded in part by an Allen Barnett Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Participated in research design: Guan and Morris

Conducted experiments: Guan

Contributed new reagents or analytic tools: Guan and Morris

Performed data analysis: Guan and Morris

Wrote or contributed to the writing of the manuscript: Guan and Morris

Corresponding author

Correspondence to Marilyn E. Morris.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, X., Morris, M.E. In Vitro and In Vivo Efficacy of AZD3965 and Alpha-Cyano-4-Hydroxycinnamic Acid in the Murine 4T1 Breast Tumor Model. AAPS J 22, 84 (2020). https://doi.org/10.1208/s12248-020-00466-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-020-00466-9

KEY WORDS

Navigation