Skip to main content
Log in

New insights from 2- and 3-D numerical modelling on fluid flow mechanisms and geological factors responsible for the formation of the world-class Cigar Lake uranium deposit, eastern Athabasca Basin, Canada

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Cigar Lake uranium deposit in the Athabasca Basin is the world’s second largest high-grade unconformity-related uranium deposit. Its distinct geological architecture includes heterogeneous basement lithologies, a local basement high and sub-vertical faults. The sub-vertical faults are classified further into two sub-types: faults that are restricted to the basement, termed ‘basement faults’, and faults that are distinctly related to post-Athabasca fault reactivation, in that they extend upward into the sandstone, termed ‘extended basement faults’. This study aims to evaluate the effects of the aforementioned geological factors on the fluid flow patterns under two different driving forces, buoyancy due to variation of fluid density or ‘thermal convection’ and deformation or a combination of them, and to determine the most probable fluid flow scenarios for the formation of the deposit. The numerical results show that fluid flow is strongly affected by the two types of faults. While the basement faults represent fluid paths with complex fluid flow patterns, depending on the driving forces, providing favourable physical conditions for different chemical processes, such as fluid-fluid and fluid-rock interactions, the extended basement faults enhance the permeability of an E-W corridor within the sandstone and significantly strengthen the overall upwelling flow above the basement faults, promoting sandstone-hosted mineralization. The numerical results also suggest that the main deposit likely formed via fluid convection during tectonically quiet periods, although faulting played a critical role in increasing permeability, in turn, enhancing thermal convection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alexandre P, Kyser K, Polito P, Thomas D (2005) Alteration mineralogy and stable isotope geochemistry of Paleoproterozoic basement-hosted unconformity-type uranium deposits in the Athabasca Basin. Canada. Econ Geol 100:1547–1563. https://doi.org/10.2113/gsecongeo.100.8.1547

    Article  Google Scholar 

  • Alexandre P, Kyser K, Jiricka D (2009) Critical geochemical and mineralogical factors for the formation of unconformity-related uranium deposits: comparison between barren and mineralized systems in the Athabasca Basin, Canada. Econ Geol 104:413–435. https://doi.org/10.2113/gsecongeo.104.3.413

    Article  Google Scholar 

  • Andrade N (2002) Geology of the cigar Lake uranium deposit. In: Andrade N, Breton G, Jefferson CW, Thomas D, Tourigny G, Wilson S, Yeo GM (eds) Field trip A1, the eastern Athabasca Basin and its uranium deposits: Geological Association of Canada – Mineralogical Association of Canada, annual meeting, Field Trip Guidebook A1:53–72

  • Annesley IR, Madore C, Portella P (2005) Geology and thermotectonic evolution of the western margin of the trans-Hudson Orogen: evidence from the eastern sub- Athabasca basement, Saskatchewan. Can J Earth Sci 42:573–597. https://doi.org/10.1139/e05-034

    Article  Google Scholar 

  • Backers T, Moeck I (2015) Fault tips as favorable drilling targets for geothermal prospecting – a fracture mechanical perspective. Proceedings World Geothermal Congress Melbourne, Melbourne, 19–25

  • Berg S, Skar TT (2005) Controls on damage zone asymmetry of a normal fault zone: outcrop analyses of a segment of the Moab fault, SE Utah. J Struct Geol 27:1803–1822. https://doi.org/10.1016/j.jsg.2005.04.012

    Article  Google Scholar 

  • Bishop C, Mainville A, Yesnik L (2016) Cigar Lake Operation Northern Saskatchewan, Canada. Tech Rep, 1–164

  • Boiron MC, Cathelineau M, Richard A (2010) Fluid flows and metal deposition near basement/cover unconformity: lessons and analogies from Pb-Zn-F-Ba systems for the understanding of Proterozoic U deposits. Geofluids 10:270–292. https://doi.org/10.1111/j.1468-8123.2010.00289.x

    Article  Google Scholar 

  • Bruneton P (1993) Geological environment of the Cigar Lake uranium deposit. Can J Earth Sci 30:653–673. https://doi.org/10.1139/e93-054

    Article  Google Scholar 

  • Card CD, Pana D, Portella P, Thomas DJ, Annesley IR (2007) Basement rocks to the Athabasca Basin, Saskatchewan and Alberta. In: Jefferson CW, Delaney G (eds) EXTECH IV: Geology and Uranium EXploration TECHnology of the Proterozoic Athabasca Basin, Saskatchewan and Alberta, Geological Survey of Canada, Bulletin 588 (also Geological Association of Canada, Mineral Deposits Division, Special Publication 4; Saskatchewan Geological Society, Special Publication 18), pp 69–87

  • Card CD, Rayner N, Pearson G, Luo Y, Creaser R (2018) Geochronological results from the southern Athabasca Basin region, Saskatchewan; in Summary of investigations 2018, Volume 2, Saskatchewan Geological Survey, Saskatchewan Ministry of Energy and Resources, Miscellaneous Report 2018–4.2, Paper A-4, 15p

  • Chi G, Bosman SA, Card C (2013) Numerical modeling of fluid pressure regime in the Athabasca basin and implications for fluid flow models related to the unconformity-type uranium mineralization. J Geochem Explor 125:8–19. https://doi.org/10.1016/j.gexplo.2012.10.017

    Article  Google Scholar 

  • Chi G, Li Z, Chu H, Bethune KM, Quirt D, Ledru P, Normand C, Card C, Bosman S, Davis WJ, Potter EG (2018) A shallow-burial mineralization model for the unconformity-related uranium deposits in the Athabasca basin. Econ Geol 113:1209–1217. https://doi.org/10.5382/econgeo.2018.4588

    Article  Google Scholar 

  • Chi G, Chu H, Petts D, Potter E, Jackson S, Williams-Jones A (2019) Uranium-rich diagenetic fluids provide the key to unconformity-related uranium mineralization in the Athabasca Basin. Nat Sci Rep 9:5530. https://doi.org/10.1038/s41598-019-42032-0

    Article  Google Scholar 

  • Choi J, Edwards P, Ko K, Kim Y (2016) Definition and classification of fault damage zones: a review and a new methodological approach. Earth Sci Rev 152:70–87. https://doi.org/10.1016/j.earscirev.2015.11.006

    Article  Google Scholar 

  • Cox SF, Knackstedt MA, Braun J (2001) Principles of structural control on permeability and fluid flow in hydrothermal systems. In: Richards JP, Tosdal RM (eds) Structural controls on ore genesis. Econ Geol 14:1–24 http://hdl.handle.net/1885/92810

  • Cox SF, (2005) Coupling between deformation, fluid pressures, and fluid flow in ore-producing hydrothermal systems at depth in the cust. Econ Geol 100th Anniversary Volume:39–75. http://hdl.handle.net/1885/79129

  • Cui T, Yang J, Samson IM (2010) Numerical modelling of hydrothermal fluid flow in the Paleoproterozoic Thelon Basin, Nunavut, Canada. J Geochem Explor 106:69–76. https://doi.org/10.1016/j.gexplo.2009.12.008

    Article  Google Scholar 

  • Cui T, Yang JW, Samson IM (2012) Tectonic deformation and fluid flow: implications for the formation of unconformity-related uranium deposits. Econ Geol 107:147–163. https://doi.org/10.2113/econgeo.107.1.147

    Article  Google Scholar 

  • d’Alessio MA, Martel SJ (2004) Fault terminations and barriers to fault growth. J Struct Geol 26:1885–1896. https://doi.org/10.1016/j.jsg.2004.01.010

    Article  Google Scholar 

  • Derome D, Cathelineau M, Cuney M, Fabre C, Lhomme T, Banks D (2005) Mixing of sodic and calcic brines and uranium deposition at McArthur River, Saskatchewan, Canada: a Raman and laser-induced breakdown spectroscopic study of fluid inclusions. Econ Geol 100:1529–1545. https://doi.org/10.2113/gsecongeo.100.8.1529

    Article  Google Scholar 

  • Eldursi K, Branquet Y, Guillou-Frottier L, Marcoux E (2009) Numerical investigation of transient hydrothermal processes around intrusions: heat transfer and fluid-circulation controlled mineralization patterns. Earth Planet Sci Lett 288:70–83. https://doi.org/10.1016/j.epsl.2009.09.009

    Article  Google Scholar 

  • Eldursi K, Chi G, Bethune K, Li Z, Ledru P, Quirt D (2018) Numerical modeling of the effects of basement fault configuration on fluid flow pattern and significance for unconformity-related uranium deposits. Abstract volume, RFG 2018 Resources for Future Generations Vancouver, Canada

  • Faulkner DR, Jackson CAL, Lunn RJ, Schlische RW, Shipton ZK, Wibberley CAJ, Withjack MO (2010) A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. J Struct Geol 32:1557–1575. https://doi.org/10.1016/j.jsg.2010.06.009

    Article  Google Scholar 

  • Fayek M, Kyser TK (1997) Characterization of multiple fluid-flow events and rare-earth-element mobility associated with formation of unconformity-type uranium deposits in the Athabasca Basin, Saskatchewan. Can Mineral 35(3):627–658

    Google Scholar 

  • Fayek M, Harrison MT, Ewing R, Grove M, Coath C (2002) O and Pb isotopic analyses of uranium minerals by ion microprobe and U–Pb ages from the Cigar Lake deposit. Chem Geol 185:205–225. https://doi.org/10.1016/S0009-2541(01)00401-6

    Article  Google Scholar 

  • Ferry JM, Wing B, Penniston-Dorland S, Rumble D (2002) The direction of fluid flow during contact metamorphism of siliceous carbonate rocks: new data for the Monzoni and Predazzo aureoles, northern Italy, and a global review. Contrib Mineral Petrol 142:679–699. https://doi.org/10.1007/s00410-001-0316-7

    Article  Google Scholar 

  • Ford A, Blenkinsop TG, McLellan JG (2009) Factors affecting fluid flow in strike-slip fault systems: coupled deformation and fluid flow modelling with application to the western Mount Isa Inlier, Australia. Geofluids 9:2–23. https://doi.org/10.1111/j.1468-8123.2008.00219.x

    Article  Google Scholar 

  • Gartrell A, Zhang Y, Liska M, Dewhursta D (2004) Fault intersections as critical hydrocarbon leakage zones: integrated field study and numerical modelling of an example from the Timor Sea, Australia. Mar Pet Geol 21:1165–1179. https://doi.org/10.1016/j.marpetgeo.2004.08.001

    Article  Google Scholar 

  • Hoeve J, Sibbald T (1978) On the genesis of Rabbit Lake and other unconformity-type uranium deposits in northern Saskatchewan, Canada. Econ Geol 73:1450–1473. https://doi.org/10.2113/gsecongeo.73.8.1450

    Article  Google Scholar 

  • Hoeve J, Quirt D (1984) Mineralization and host rock alteration in relation to clay mineral diagenesis and evolution of the Middle Proterozoic, Athabasca Basin, northern Saskatchewan, Canada. Saskatchewan Research Council, pp 187

  • Itasca (2012) FLAC3D: Fast Lagrangian analysis of continua in 3 dimensions, User Manual, Version 5.0. Fifth ed. Itasca Consulting Group Inc., Minneapolis, Minnesota

  • Jefferson CW, Thomas D, Gandhi SS, Ramaekers P, Delaney G, Brisbin D, Cutts C, Quirt D, Portella P, Olson RA (2007) Unconformityassociated uranium deposits of the Athabasca Basin, Saskatchewan and Alberta. In: Jefferson CW, Delaney G (eds) EXTECH IV: Geology and Uranium EXploration TECHnology of the Proterozoic Athabasca Basin, Saskatchewan and Alberta. Geological Survey of Canada, Bulletin 588 (also Geological Association of Canada, Mineral Deposits Division, Special Publication 4; Saskatchewan Geological Society, Special Publication 18), pp 23–67

  • Jeanneret P, Goncalves P, Durand C, Trap P, Marquer D, Quirt D, Ledru P (2016) Tectono-metamorphic evolution of the pre-Athabasca basement within the Wollaston-Mudjatik Transition Zone, Saskatchewan. Can J Earth Sci 53:231–259. https://doi.org/10.1139/cjes-2015-0136

    Article  Google Scholar 

  • Jeanneret P, Goncalves P, Durand C, Poujol M, Trap P, Marquer D, Quirt D, Ledru P (2017) Geochronological constraints on the Trans-Hudsonian tectono-metamorphic evolution of the pre-Athabasca basement within the Wollaston-Mudjatik transition zone, Saskatchewan. Precambrian Res 301:152–178. https://doi.org/10.1016/j.precamres.2017.07.019

    Article  Google Scholar 

  • Lewry JF, Sibbald TII (1980) Thermotectonic evolution of the Churchill province in northern Saskatchewan. Tectonophysics 68:45–82. https://doi.org/10.1016/0040-1951(80)90008-6

    Article  Google Scholar 

  • Li Z, Chi G, Bethune K (2016) The effects of basement faults on thermal convection and implications for the formation of unconformity-related uranium deposits in the Athabasca Basin, Canada. Geofluids 16:729–751. https://doi.org/10.1111/gfl.12180

    Article  Google Scholar 

  • Li Z, Chi G, Bethune K, Thomas D, Zaluski G (2017) Structural controls on fluid flow during compressional reactivation of basement faults: insights from numerical modeling for the formation of unconformity-related uranium deposits in the Athabasca Basin, Canada. Econ Geol 112:451–466. https://doi.org/10.2113/econgeo.112.2.451

    Article  Google Scholar 

  • Li Z, Chi G, Bethune K, Eldursi K, Thomas D, Quirt D, Ledru P (2018a) Synchronous egress and ingress fluid flow related to compressional reactivation of basement faults: the Phoenix and Gryphon uranium deposits, southeastern Athabasca Basin, Saskatchewan, Canada. Mineral Deposita 53:277–292. https://doi.org/10.1007/s00126-017-0737-5

    Article  Google Scholar 

  • Li Z, Chi G, Bethune K, Eldursi K, Thomas D, Quirt D, Ledru P, Gudmundson G (2018b) Numerical simulation of strain localization and its relationship to formation of the Sue unconformity-related uranium deposits, eastern Athabasca Basin, Canada. Ore Geol Rev 101:17–31. https://doi.org/10.1016/j.oregeorev.2018.07.004

    Article  Google Scholar 

  • Kaczowka AJ (2017) Geometallurgical and geological evaluation of the high-grade polymetallic unconformity-related cigar lake uranium deposit. M.Sc. thesis, Queen’s University, pp 209

  • Kim Y, Sanderson DJ (2010) Inferred fluid flow through fault damage zones based on the observation of stalactites in carbonate caves. J Struct Geol 32:1305–1316. https://doi.org/10.1016/j.jsg.2009.04.017

    Article  Google Scholar 

  • Kirchner G, Lehnert-Thiel K, Rich J, Strnad JG (1980) The Key Lake U-Ni deposits: a model for Lower Proterozoic uranium deposits. In: Ferguson J, Goleby AB (eds) Uranium in the Pine Creek Geosyncline. International Atomic Energy Agency, Vienna, ST1/PUB/555, pp 617–629

  • Komninou A, Svebjensk DA (1996) Geochemical modeling of the formation of an unconformity-type uranium deposit. Econ Geol 91:590–606. https://doi.org/10.2113/gsecongeo.91.3.590

    Article  Google Scholar 

  • Kotzer TG, Kyser TK (1995) Petrogenesis of the Proterozoic Athabasca Basin, northern Saskatchewan, Canada, and its relation to diagenesis, hydrothermal uranium mineralization and paleohydrogeology. Chem Geol 120:45–89. https://doi.org/10.1016/0009-2541(94)00114-N

    Article  Google Scholar 

  • Martz P, Cathelineau M, Mercadier J, Boiron M, Jaguin J, Tarantola A, Demacon M, Gerbeaud O, Quirt D, Doney A, Ledru P (2017) C-O-H-N fluids circulations and graphite precipitation in reactivated Hudsonian shear zones during basement uplift of the Wollaston-Mudjatik Transition Zone: example of the Cigar Lake U deposit. Lithos 295:222–245. https://doi.org/10.1016/j.lithos.2017.10.001

    Article  Google Scholar 

  • Martz P, Mercadier J, Cathelineau M, Boiron M, Quirt D, Doney A, Gerbeaud O, De Wally E, Ledru P (2019) Formation of U-rich mineralizing fluids through basinal brine migration within basement-hosted shear zones: a large-scale study of the fluid chemistry around the unconformity-related Cigar Lake U deposit (Saskatchewan, Canada). Chem Geol 508:116–143. https://doi.org/10.1016/j.chemgeo.2018.05.042

    Article  Google Scholar 

  • Mercadier J, Richard A, Boiron MC, Cathelineau M, Cuney M (2010) Migration of brines in the basement rocks of the Athabasca Basin through microfracture networks (P-Patch U deposit, Canada). Lithos 115:121–136. https://doi.org/10.1016/j.lithos.2009.11.010

    Article  Google Scholar 

  • Mitchell TM, Faulkner DR (2009) The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: a field study from the Atacama fault system, northern Chile. J Struct Geol 31:802–816. https://doi.org/10.1016/j.jsg.2009.05.002

    Article  Google Scholar 

  • Oliver NH, McLellan JG, Hobbs BE, Cleverley JS, Ord A, Feltrin L (2006) Numerical models of extensional deformation, heat transfer, and fluid flows across basement-cover interfaces during basin-related mineralization. Econ Geol 101:1–31. https://doi.org/10.2113/101.1.1

    Article  Google Scholar 

  • Pagel M (1975) Détermination des conditions physico-chimiques de la silicification diagénétique des grès Athabasca (Canada) au moyen des inclusions fluids. Comptes Rendus Série D 280:2301–2304

    Google Scholar 

  • Peacock DCP, Nixon CW, Rotevatn A, Sanderson DJ, Zuluaga LF (2016) Glossary of fault and other fracture networks. J Struct Geol 92:12–29. https://doi.org/10.1016/j.jsg.2016.09.008

    Article  Google Scholar 

  • Pek AA, Malkovsky VI (2016) Linked thermal convection of the basement and basinal fluids in formation of the unconformity-related uranium deposits in the Athabasca Basin, Saskatchewan, Canada. Geofluids 16:925–940. https://doi.org/10.1111/gfl.12196

    Article  Google Scholar 

  • Pfiffner O, Ramsay J (1982) Constraints on geological strain rates: arguments from finite strain states of naturally deformed rocks. J Geophys Res Solid Earth 87:311–321. https://doi.org/10.1029/JB087iB01p00311

    Article  Google Scholar 

  • Raffensperger JP, Garven G (1995) The formation of unconformity-type uranium ore-deposits. Coupled groundwater-flow and heat transport modeling. Am J Sci 295:581–636. https://doi.org/10.2475/ajs.295.5.581

    Article  Google Scholar 

  • Ramaekers P, Jefferson CW, Yeo GM, Collier B, Long, DGF, Drever G, Mchardy S, Jiricka D, Cutts C, Wheatley K, Catuneanu O, Bernier S (2007) Revised geological map and stratigraphy of the Athabasca Group, Saskatchewan and Alberta. In: Jefferson CW, Delaney G (eds) EXTECH IV: Geology and Uranium EXploration TECHnology of the Proterozoic Athabasca Basin, Saskatchewan and Alberta. Geological Survey of Canada, Bulletin 588 (also Geological Association of Canada, Mineral Deposits Division, Special Publication 4; Saskatchewan Geological Society, Special Publication 18), pp 155–192

  • Reyx J, Ruhlmann F (1993) Étude métallographique des différentes associations minérales et caractérisation chimique des minéraux uranifères du gisement de Cigar Lake (Saskatchewan, Canada). Can J Earth Sci 30:705–719. https://doi.org/10.1139/e93-057

    Article  Google Scholar 

  • Richard A, Pettke T, Cathelineau M, Boiron MC, Mercadier J, Cuney M, Derome D (2010) Brine-rock interaction in the Athabasca basement (McArthur River U deposit, Canada): consequences for fluid chemistry and uranium uptake. Terra Nova 22:303–308. https://doi.org/10.1111/j.1365-3121.2010.00947.x

    Article  Google Scholar 

  • Saskatchewan Geological Survey (2003) Section on sodium sulphate; in geology, and mineral and petroleum resources of Saskatchewan, Saskatchewan industry and resources. Misc Rep 2003-7:139–143 http://publications.gov.sk.ca/documents/310/36407-MiscRep2003-7.pdf

    Google Scholar 

  • Schaubs PM, Ord A, Annesley I, Madore C, Quirt D, Thomas D, and Portella P (2005) A comparison of McArthur River and Cigar Lake unconformity-related uranium deposits, Saskatchewan, Canada: insight from deformation-fluid flow models: structure, tectonics and ore mineralisation processes: Townsville, Queensland, 2005, Contributions of the Econ Geol Research Unit 64, Abstract Volume, p 121

  • Sheahan C, Fayek M, Quirt D, Jefferson CW (2016) A combined ingress-egress model for the Kianna unconformity-related uranium deposit, Shea Creek project, Athabasca Basin, Canada. Econ Geol 111:225–257. https://doi.org/10.2113/econgeo.111.1.225

    Article  Google Scholar 

  • Sibbald T (1985) Geology and genesis of the Athabasca Basin uranium deposits; in Summary of Investigations 1985. Saskatchewan geological survey; Sask Energy and Mines, Misc Rep 133–156

  • Sibson R (2000) Fluid involvement in normal faulting. J Geodyn 29:469–499. https://doi.org/10.1016/S0264-3707(99)00042-3

    Article  Google Scholar 

  • Stern LA, Chamberlain CP, Barnett DE, Ferry JM (1992) Stable isotope evidence for regional-scale fluid migration in a Barrovian metamorphic terrane, Vermont USA. Contrib Mineral Petrol 112:475–489. https://doi.org/10.1007/BF00310779

    Article  Google Scholar 

  • Thomas D, Mathews RB, Sopuck V (2000) Athabasca Basin (Canada) unconformity-type uranium deposits: exploration model, current mine developments and exploration directions. In: Cluer JK, Price JG, Struhsacker EM, Hardyman RF, Morris CL (eds) Geology and ore deposits 2000: the Great Basin and beyond. Geological Society of Nevada Symposium Proceedings, Reno Nevada, May 15–18, 2000, Volume 1:103–126

  • Zhang Y, Schaubs PM, Zhao C, Ord A, Hobbs B, Barnicoat A (2008) Fault-related dilation, permeability enhancement, fluid flow and mineral precipitation patterns: numerical models. Geol Soc Lond 299:239–255. https://doi.org/10.1144/SP299.15

    Article  Google Scholar 

  • Zhang Y, Gartrell A, Underschultz JR, Dewhurst DN (2009) Numerical modelling of strain localization and fluid flow during extensional fault reactivation: implications for hydrocarbon preservation. J Struct Geol 31:315–327. https://doi.org/10.1016/j.jsg.2008.11.006

    Article  Google Scholar 

  • Zhang Y, Schaubs PM, Sheldon HA, Poulet T, Karrech A (2013) Modelling fault reactivation and fluid flow around a fault restraining step-over structure in the Laverton gold region, Yilgarn Craton, Western Australia. Geofluids 13:127–139. https://doi.org/10.1111/gfl.12012

    Article  Google Scholar 

Download references

Acknowledgements

This work is a part of the THMC (Thermal-Hydraulic-Mechanical-Chemical) Project in the Department of Geology, University of Regina, that is supported financially by Orano Canada Inc. and Natural Sciences and Engineering Research Council of Canada (NSERC). The paper greatly benefited from the insightful reviews of the two anonymous reviewers and the guest editor Julien Mercadier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalifa Eldursi.

Additional information

Editorial handling: J. Mercadier

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eldursi, K., Chi, G., Bethune, K. et al. New insights from 2- and 3-D numerical modelling on fluid flow mechanisms and geological factors responsible for the formation of the world-class Cigar Lake uranium deposit, eastern Athabasca Basin, Canada. Miner Deposita 56, 1365–1388 (2021). https://doi.org/10.1007/s00126-020-00979-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-020-00979-5

Keywords

Navigation