Skip to main content

Advertisement

Log in

Simple numerical tests for ocean tidal models

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

There is a growing interest in tidal effects on the global wind-driven oceanic circulation. Tidal models used in such investigations have been verified by comparison with satellite and tide gauge data, but synthetic tests have not been published. In this paper we present three numerical tests in spherical geometry, which are suitable for testing the tidal component of global ocean models. The first test is a tsunami-like propagation of an initial Gaussian depression with no external forcing. The other two tests examine the tidal response of an ocean with an undulating bottom with four Gaussian ridges and an ocean with a flat bottom with a realistic land mask. We provide the results from six model configurations, which differ in the time-stepping scheme and computational grid used. Most of them are implemented in present-day global ocean models. Although the proposed numerical tests are simple compared to realistic simulations, their analytic solutions are not available. We thus check the conservation of time invariants to ensure that the solutions are physically meaningful. We also compare the time evolution of certain physical quantities and the differences in sea surface heights at particular time instants with respect to a reference solution. All tested time stepping schemes are suitable for tidal studies except for the Euler implicit time stepping scheme. Model configurations based on the Arakawa grids B/E use smoothing to suppress the grid-scale noise which results in an energy leakage of around 5%. The B/E-grid energy leakage is probably acceptable if we consider that tuned diffusive terms are used in real-world configurations. The C-grid and B/E-grid solutions differ in the vicinity of solid boundaries as a consequence of different boundary conditions. The B-grid and E-grid solutions are similar, unless the shape of the solid boundaries is complex due to the different shapes of the respective grid cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Accad Y. and Pekeris C.L., 1978. Solution of the tidal equations for the M2 and S2 tides in the world oceans from a knowledge of the tidal potential alone. Phil. Trans. R. Soc. London, 290, 235–266.

    Article  Google Scholar 

  • Arakawa A. and Lamb V.R., 1977. Computational design of the basic dynamical processes of the UCLA general circulation model. Methods Comput. Phys., 17, 173–265.

    Google Scholar 

  • Arbic B.K., Stephen T.G., Robert W.H. and Simmons H.L., 2004. The accuracy of surface elevations in forward global barotropic and baroclinic tide models. Deep-Sea Res. Part II-Top. Stud. Oceanogr., 51, 3069–3101.

    Article  Google Scholar 

  • Arbic B.K., Wallcraft A.J. and Metzger E.J., 2010. Concurrent simulation of the eddying general circulation and tides in a global ocean model. Ocean Model., 32, 175–187.

    Article  Google Scholar 

  • Avlesen H., Berntsen J. and Espelid T.O., 2001. A convergence study of two ocean models applied to a density driven flow. Int. J. Numer. Methods Fluids, 36, 639–657, DOI: https://doi.org/10.1002/fld.149.

    Article  Google Scholar 

  • Bacastow R. and Maier-Reimer E., 1989. Ocean-circulation model of the carbon cycle. Clim Dyn., 4, 95–125, DOI: https://doi.org/10.1007/BF00208905.

    Article  Google Scholar 

  • Baines P.G., 1982. On internal tide generation models. Deep Sea Research Part A Oceanographic Research Papers, 29, 307–338.

    Article  Google Scholar 

  • Batteen M.L. and Han Y.J., 1981. On the computational noise of finite-difference schemes used in ocean models. Tellus, 33, 387–396, DOI: https://doi.org/10.1111/j.2153-3490.1981.tb01761.x.

    Article  Google Scholar 

  • Beckers J. and Deleersnijder E., 1993. Stability of a FBTCS scheme applied to the propagation of shallow-water inertia-gravity waves on various space grids. J. Comput. Phys., 108, 95–104, DOI: https://doi.org/10.1006/jcph.1993.1166.

    Article  Google Scholar 

  • Campin J.M., Adcroft A., Hill C. and Marshall J., 2004. Conservation of properties in a free-surface model. Ocean Model., 6, 221–244, DOI: https://doi.org/10.1016/S1463-5003(03)00009-X.

    Article  Google Scholar 

  • Dukowicz J.K., 1995. Mesh effects for Rossby waves. J. Comput. Phys., 119, 188–194, DOI: https://doi.org/10.1006/jcph.1995.1126.

    Article  Google Scholar 

  • Durran D.R., 1991. The third order Adams-Bashforth method: an attractive alternative to leapfrog time differencing. Mon. Weather Rev., 119, 702–720.

    Article  Google Scholar 

  • Durran D.R., 1999. Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Springer-Verlag, New York.

    Book  Google Scholar 

  • Eby M., Weaver A.J., Alexander K., Zickfeld K., Abe-Ouchi A., Cimatoribus A.A., Crespin E., Drijfhout S.S., Edwards N.R., Eliseev A.V., Feulner G., Fichefet T., Forest C.E., Goosse H., Holden P.B., Joos F., Kawamiya M., Kicklighter D., Kienert H., Matsumoto K., et al., 2013. Historical and idealized climate model experiments: An intercomparison of Earth system models of intermediate complexity. Clim. Past., 9, 1111–1140, DOI: https://doi.org/10.5194/cp-9-1111-2013.

    Article  Google Scholar 

  • Egbert G. and Ray R., 2000. Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405, 775–778.

    Article  Google Scholar 

  • Einšpigel D. and Martinec Z., 2015. A new derivation of the shallow water equations in geographical coordinates and their application to the global barotropic ocean model (the DEBOT model). Ocean Model., 92, 85–100, DOI: https://doi.org/10.1016/j.ocemod.2015.05.006.

    Article  Google Scholar 

  • Friedlingstein P., Cox P., Betts R., Bopp L., von Bloh W., Brovkin V., Cadule P., Doney S., Eby M., Fung I., Bala G., John J., Jones C., Joos F., Kato T., Kawamiya M., Knorr W., Lindsay K., Matthews H.D., Raddatz T., et al., 2013. Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J. Climate, 19, 3337–3353, DOI: https://doi.org/10.1175/JCLI3800.1.

    Article  Google Scholar 

  • Gadd A., 1974. An Economical Explicit Integration Scheme. Technical Note 44. Meteorological Office, U.K.

  • Goh J.T., Schmidt H., Gerstoft P. and Seong W., 1997. Benchmarks for validating range-dependent seismo-acoustic propagation codes. IEEE J. Ocean. Eng., 22, 226–236, DOI: https://doi.org/10.1109/48.585942.

    Article  Google Scholar 

  • Green J.A.M. and Nycander J., 2013. A comparison of tidal conversion parameterizations for tidal models. Ocean Model., 43, 104–119.

    Google Scholar 

  • Gregory J.M., Dixon K.W., Stouffer R.J., Weaver A.J., Driesschaert E., Eby M., Fichefet T., Hasumi H., Hu A., Jungclaus J.H., Kamenkovich I.V., Levermann A., Montoya M., Murakami S., Nawrath S., Oka A., Sokolov A.P. and Thorpe R.B., 2005. A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys. Res. Lett., 32, L12703, DOI: https://doi.org/10.1029/2005GL023209.

    Article  Google Scholar 

  • Griffies S.M., 2004. Fundamentals of Ocean Climate Models. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Griffies S.M. and Hallberg R.W., 2000. Biharmonic friction with a Smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models. Mon. Weather Rev., 128, 2935–2946, DOI: https://doi.org/10.1175/1520-0493(2000)128h2935:BFWASLi2.0.CO;2.

    Article  Google Scholar 

  • Hairer E., Nørsett S. P. and Wanner G., 1993. Solving Ordinary Differential Equations I: Nonstiff Problems. 2nd Edition. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Hendershott M., 1972. The e_ects of solid earth deformation on global ocean tides. Geophys. J. Int., 29, 389–402.

    Article  Google Scholar 

  • Hsieh W.W., Davey M.K. and Wajsowicz R.C., 1983. The free Kelvin wave in finite-difference numerical models. J. Phys. Oceanogr., 13, 1383–1397, DOI: https://doi.org/10.1175/1520-0485(1983)013h1383:TFKWiFi2.0.CO;2.

    Article  Google Scholar 

  • Janjic I., 1974. A stable centered difference scheme free of two-grid-interval noise. Mon. Weather Rev., 102, 319–323.

    Article  Google Scholar 

  • Jayne S.R. and St Laurent L.C., 2001. Parameterizing tidal dissipation over rough topography. Geophys. Res. Lett., 28, 811–814.

    Article  Google Scholar 

  • Kagan B. and Timofeev A., 2015. Spatial variability in the drag coefficient and its role in tidal dynamics and energetics, a case study: The surface M2 tide in the subsystem of the Barents and Kara Seas. Izv. Atmos. Ocean. Phys., 51, 98–111.

    Article  Google Scholar 

  • Kaplan G., Bartlett J., Monet A., Bangert J. and Puatua W., 2011. Users Guide to NOVAS Version F3.1. Technical Report. USNO, Washington, D.C., http://aa.usno.navy.mil/software/novas/novas_f/NOVAS_F3.1_Guide.pdf.

    Google Scholar 

  • Larsson E. and Abrahamsson L., 2003. Helmholtz and parabolic equation solutions to a benchmark problem in ocean acoustics. J. Acoust. Soc. Am., 113, 2446–2454, DOI: https://doi.org/10.1121/1.1565071.

    Article  Google Scholar 

  • Lei H., 2014. A two-time-level split-explicit ocean circulation model (MASNUM) and its validation. Acta Oceanol. Sin., 33, 11–35, DOI: https://doi.org/10.1007/s13131-014-0553-z.

    Google Scholar 

  • Lynett P.J., Gately K., Wilson R., Montoya L., Arcas D., Aytore B., Bai Y., Bricker J.D., Castro M.J., Cheung K.F., et al., 2017. Inter-model analysis of tsunami-induced coastal currents. Ocean Model., 114, 14–32.

    Article  Google Scholar 

  • Maier-Reimer E. and Mikolajewicz U., 1992. The Hamburg Large Scale Geostrophic Ocean General Circulation Model. DKRZ Series Report 2. Max-Planck-Institut für Meteorologie, Hamburg, Germany, http://mud.dkrz.de/fileadmin/extern/documents/reports/ReportNo.02.pdf.

    Google Scholar 

  • McWilliams J.C., 2006. Fundamentals of Geophysical Fluid Dynamics. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Melchior P.J., 1983. The Tides of the Planet Earth. 2nd Edition. Pergamon Press, Oxford, U.K.

    Google Scholar 

  • Mesinger F., 1977. Forward-backward scheme, and its use in a limited area model. Contrib. Atmos. Phys., 50, 200–210.

    Google Scholar 

  • Mesinger F. and Arakawa A., 1976. Numerical Methods Used in Atmospheric Models. Volume 1. GARP Publ. Ser., 17. World Meteorological Organization, International Council of Scientific Unions.

  • Mesinger F. and Popovic J.Mesinger>, 2010. Forward-backward scheme on the B/E grid modified to suppress lattice separation: the two versions, and any impact of the choice made? Meteorol. Atmos. Phys., 108, 1–8, DOI: https://doi.org/10.1007/s00703-010-0080-1.

    Article  Google Scholar 

  • Müller M., Haak H., Jungclaus J.H., Sündermann J. and Thomas M., 2010. The effect of ocean tides on a climate model simulation. Ocean Model., 35, 304–313, DOI: https://doi.org/10.1016/j.ocemod.2010.09.001.

    Article  Google Scholar 

  • Müller M., Cherniawsky J.Y., Foreman M.G.G. and von Storch J.S., 2012. Global M2 internal tide and its seasonal variability from high resolution ocean circulation and tide modeling. Geophys. Res. Lett., 39, 304–313, DOI: https://doi.org/10.1029/2012GL053320.

    Google Scholar 

  • Munk W. and Wunsch C., 1998. Abyssal recipes II: Energetics of tidal and wind mixing. Deep Sea Research Part I: Oceanographic Research Papers, 45, 1977–2010.

    Article  Google Scholar 

  • NTHMP (National Tsunami Hazard Mitigation Program), 2012. Proceedings and Results of the 2011 NTHMMP Model Benchmarking Workshop. U.S. Department of Commerce/NOAA/NTHMP, Boulder, CO, https://permanent.access.gpo.gov/gpo44987/nthmpWorkshopProcMerged.pdf.

    Google Scholar 

  • Nycander J., 2005. Generation of internal waves in the deep ocean by tides. J. Geophys. Res.-Oceans., 110, C10028, DOI: https://doi.org/10.1029/2004JC002487.

    Article  Google Scholar 

  • Randall D.A., 1994. Geostrophic adjustment and the finite-difference shallow-water equations. Mon. Weather Rev., 122, 1371–1377, DOI: https://doi.org/10.1175/1520-0493(1994)122h1371:GAATFDi2.0.CO;2.

    Article  Google Scholar 

  • Ray R., 1998. Ocean self-attraction and loading in numerical tidal models. Mar. Geod., 21, 181–192.

    Article  Google Scholar 

  • Saad Y. and Schultz M.H., 1986. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7, 856–869, DOI: https://doi.org/10.1137/0907058.

    Article  Google Scholar 

  • Sakamoto K., Tsujino H., Nakano H., Hirabara M. and Yamanaka G., 2013. A practical scheme to introduce explicit tidal forcing into an OGCM. Ocean Sci., 9, 1089–1108.

    Article  Google Scholar 

  • Schiller A. and Fiedler R., 2007. Explicit tidal forcing in an ocean general circulation model. Geophys. Res. Lett., 34, L03611, DOI: https://doi.org/10.1029/2006GL028363.

    Article  Google Scholar 

  • Shchepetkin A.F. and McWilliams J.C., 2005. The regional oceanic modeling system (ROMS): a split-explicit, freesurface, topography-following-coordinate oceanic model. Ocean Model., 9, 347–404.

    Article  Google Scholar 

  • Shchepetkin A.F. and McWilliams J.C., 2008. Computational kernel algorithms for fine-scale, multi-process, longtime oceanic simulations. In: Temam R. and Tribbia J. (Eds), Handbook of Numerical Analysis, 14, 121–183, DOI: https://doi.org/10.1016/S1570-8659(08)01202-0.

    Article  Google Scholar 

  • Sielecki A., 1968. An energy conserving difference scheme for the storm surge equations. Mon. Weather Rev., 96, 150–156, DOI: https://doi.org/10.1175/1520-0493(1968)096h0150:AECDSFi2.0.CO;2.

    Article  Google Scholar 

  • St Laurent L.S., Simmons H.L. and Jayne S.R., 2002. Estimates of tidally driven enhanced mixing in the deep ocean. Geophys. Res. Lett., 29, 21–1–21–4, DOI: https://doi.org/10.1029/2002GL015633

    Article  Google Scholar 

  • Stammer D., Ray R., Andersen O.B., Arbic B., Bosch W., Carrere L., Cheng Y., Chinn D., Dushaw B., Egbert G, et al., 2014. Accuracy assessment of global barotropic ocean tide models. Rev. Geophys., 52, 243–282.

    Article  Google Scholar 

  • Stouffe R.J., Yin J., Gregory J.M., Dixon K.W., Spelman M.J., Hurlin W., Weaver A.J., Eby M., Flato G.M., Hasumi H., Hu A., Jungclaus J.H., Kamenkovich I.V., Levermann A., Montoya M., Murakami S., Nawrath S., Oka A., Peltier W.R., Robitaille D.Y., et al., 2006. Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Climate, 19, 1365–1387, DOI: https://doi.org/10.1175/JCLI3689.1.

    Article  Google Scholar 

  • Synolakis C.E., Bernard E.N., Titov V.V., Kânoğlu U. and Gonzalez F.I., 2007. Standards, Criteria, and Procedures for NOAA Evaluation of Tsunami Numerical Models. NOAA Technical Memorandum OAR PMEL 135, NOAA/Pacific Marine Environmental Laboratory, Seattle, WA, URL http://nctr.pmel.noaa.gov/benchmark/SP_3053.pdf.

  • Varshalovich D.A., Moskalev A.N. and Khersonskii V.K., 1988. Quantum Theory of Angular Momentum. World Scientific, Singapore.

    Book  Google Scholar 

  • Wajsowicz R.C., 1986. Free planetary waves in finite-difference numerical models. J. Phys. Oceanogr., 16, 773–789, DOI: https://doi.org/10.1175/1520-0485(1986)016h0773:FPWiFDi2.0.CO;2.

    Article  Google Scholar 

  • Wang D., Liu Q. and Lv X., 2014. A study on bottom friction coefficient in the Bohai, Yellow, and East China Sea. Math. Probl. Eng., 2014, Article ID 432529, DOI: https://doi.org/10.1155/2014/432529.

    Google Scholar 

  • Williamson D.L., Drake J.B., Hack J.J., Jakob R. and Swarztrauber P.N., 1992. A standard test set for numerical approximations to the shallow water equations in spherical geometry. J. Comput. Phys., 102, 211–224, DOI: https://doi.org/10.1016/S0021-9991(05)80016-6.

    Article  Google Scholar 

  • Zaron E.D. and Egbert G.D., 2006. Estimating open-ocean barotropic tidal dissipation: The Hawaiian Ridge. J. Phys. Oceanogr., 36, 1019–1035.

    Article  Google Scholar 

  • Zickfeld K., Eby M., Weaver A.J., Alexander K., Crespin E., Edwards N.R., Eliseev A.V., Feulner G., Fichefet T., Forest C.E., Friedlingstein P., Goosse H., Holden P.B., Joos F., Kawamiya M., Kicklighter D., Kienert H., Matsumoto K., Mokhov Monier E., et al., 2013. Long-term climate change commitment and reversibility: An EMIC intercomparison. J. Climate, 26, 5782–5809, DOI: https://doi.org/10.1175/JCLI-D-12-00584.1.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Grant Agency of the Czech Republic, project No. P210/17-03689S, by The Ministry of Education, Youth and Sports from the Large Infrastructures for Research, Experimental Development and Innovations project “IT4Innovations National Supercomputing Center — LM2015070”, project ID OPEN-15-41, by the European Space Agency Contract No. 4000109562/14/NL/CBi “Swarm+Oceans” under the STSE Programme, by the Science Foundation Ireland (SFI) grant 11/RFP.1/GEO/3309, and by the Charles University grant SVV 260447. The authors acknowledge this support. We also thank the anonymous reviewers and Dr. Kevin Fleming for their suggestions and grammar corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libor Šachl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šachl, L., Einšpigel, D. & Martinec, Z. Simple numerical tests for ocean tidal models. Stud Geophys Geod 64, 202–240 (2020). https://doi.org/10.1007/s11200-019-0348-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-019-0348-y

Keywords

Navigation