Skip to main content
Log in

Is Inverse Gas Chromatography (IGC) a Convenient Method to Determine Compatibility of Rubber Materials?

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Compatibility is a key factor in formulation of polymeric compounds. Having sufficient data about solubility of components may help to create novel engineered materials. Solubility parameter has been used as a tool for predicting the compatibility of materials. In this study, the solubility parameter of natural rubber and styrene–butadiene rubber is determined through inverse gas chromatography. The 3D solubility parameter sphere for each rubber has been depicted using three components of the Hansen solubility parameter. In addition, the reliability of the procedure has been confirmed through scanning electron microscope (SEM) micrographs and Fourier-transform infrared spectroscopy (FTIR-ATR) spectra of samples. Results demonstrate NR and SBR solubility parameters to be 23.58 and 21.98 (J/cm3)0.5 at room temperature. Also, this study aimed to verify if the inverse gas chromatography method is a reliable method to be used in polymer industries as a prediction tool before compounding. Finally, results confirmed that inverse gas chromatography is a promising method in the field of rubbers.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adamska K, Voelkel A, Berlińska A (2016) The solubility parameter for biomedical polymers—application of inverse gas chromatography. J Pharm Biomed Anal 127:202–206

    Article  CAS  PubMed  Google Scholar 

  2. Anderson JL, Pino V, Hagberg EC, Sheares VV, Armstrong DW (2003) Surfactant solvation effects and micelle formation in ionic liquids. Chem Commun 19:2444–2445

    Article  CAS  Google Scholar 

  3. Bardavid S, Schulz P, Arancibia E (2003) Solubility parameter determination of cationic surfactants by inverse GC. Chromatographia 57(7–8):529

    Article  CAS  Google Scholar 

  4. Barton AF (2017) CRC handbook of solubility parameters and other cohesion parameters. Routledge, London

    Book  Google Scholar 

  5. Basivi PK, Sreekanth T, Sivalingam R, Thota C, Pasupuleti VR (2019) Surface characterization and London dispersive surface free energy of functionalized single-walled carbon nanotubes with a blend of polytetrafluoroethylene by inverse gas chromatography. Surf Interface Anal 51:516–524

    Article  CAS  Google Scholar 

  6. Burke J (1984) Solubility parameters: theory and application. The American Institute for Conservation 3

  7. DiPaola-Baranyi G, Braun J-M, Guillet J (1978) Partial molar heats of mixing of small molecules with polymers by gas chromatography. Macromolecules 11(1):224–227

    Article  CAS  Google Scholar 

  8. DiPaola-Baranyi G, Guillet J (1978) Estimation of polymer solubility parameters by gas chromatography. Macromolecules 11(1):228–235

    Article  CAS  Google Scholar 

  9. Djuris J, Nikolakakis I, Ibric S, Djuric Z, Kachrimanis K (2013) Preparation of carbamazepine–Soluplus® solid dispersions by hot-melt extrusion, and prediction of drug–polymer miscibility by thermodynamic model fitting. Eur J Pharm Biopharm 84(1):228–237

    Article  CAS  PubMed  Google Scholar 

  10. Farshchi N, Abbasian A, Larijani K (2018) Assessment of the thermodynamic properties of dl-p-mentha-1, 8-diene, 4-isopropyl-1-methylcyclohexene (dl-limonene) by inverse gas chromatography (IGC). J Chromatogr Sci 56(8):671–678

    Article  CAS  PubMed  Google Scholar 

  11. Fedors RF (1974) A method for estimating both the solubility parameters and molar volumes of liquids. Polym Eng Sci 14(2):147–154

    Article  CAS  Google Scholar 

  12. Ferguson A, Caffrey IT, Backes C, Coleman JN, Bergin SD (2016) Differentiating defect and basal plane contributions to the surface energy of graphite using inverse gas chromatography. Chem Mater 28(17):6355–6366

    Article  CAS  Google Scholar 

  13. Gupta J, Nunes C, Vyas S, Jonnalagadda S (2011) Prediction of solubility parameters and miscibility of pharmaceutical compounds by molecular dynamics simulations. J Phys Chem B 115(9):2014–2023

    Article  CAS  PubMed  Google Scholar 

  14. Huang J-C (2006) Anomalous solubility parameter and probe dependency of polymer–polymer interaction parameter in inverse gas chromatography. Eur Polymer J 42(5):1000–1007

    Article  CAS  Google Scholar 

  15. Imbernon L, Oikonomou E, Norvez S, Leibler L (2015) Chemically crosslinked yet reprocessable epoxidized natural rubber via thermo-activated disulfide rearrangements. Polymer Chem 6(23):4271–4278

    Article  CAS  Google Scholar 

  16. Jung HS, Kwon SH, Choi HJ, Jung JH, Kim YG (2016) Magnetic carbonyl iron/natural rubber composite elastomer and its magnetorheology. Compos Struct 136:106–112

    Article  Google Scholar 

  17. Karakehya N, Bilgiç C (2016) Inverse gas chromatographic determination of the surface energy of PMMA and PMMA/organophilic montmorillonite nanocomposites. Surf Interface Anal 48(7):519–521

    Article  CAS  Google Scholar 

  18. Marciniak A (2010) The solubility parameters of ionic liquids. Int J Mol Sci 11(5):1973–1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Marsac PJ, Shamblin SL, Taylor LS (2006) Theoretical and practical approaches for prediction of drug–polymer miscibility and solubility. Pharm Res 23(10):2417

    Article  CAS  PubMed  Google Scholar 

  20. Meng F, Dave V, Chauhan H (2015) Qualitative and quantitative methods to determine miscibility in amorphous drug–polymer systems. Eur J Pharm Sci 77:106–111

    Article  CAS  PubMed  Google Scholar 

  21. Öztürk E, Ocak H, Cakar F, Karanlık G, Cankurtaran Ö, Bilgin-Eran B (2018) Investigation of thermodynamic properties of 4-decyloxybiphenyl-4′-carboxylic acid liquid crystal and preparation of polymer dispersed liquid crystal composite. J Mol Liq 265:24–30

    Article  CAS  Google Scholar 

  22. Paul D, Barlow J (1984) A binary interaction model for miscibility of copolymers in blends. Polymer 25(4):487–494

    Article  CAS  Google Scholar 

  23. Williams RD (2015) Particle engineering in pharmaceutical solids processing: surface energy considerations. Curr Pharm Des 21(19):2677–2694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Riedl B, Matuana LM (2015) Inverse gas chromatography of fibers and polymers. Encyclopedia of surface and colloid science. CRC Press, Boca Raton, pp 3352–3364

    Google Scholar 

  25. Thakral S, Thakral NK (2013) Prediction of drug–polymer miscibility through the use of solubility parameter based Flory–Huggins interaction parameter and the experimental validation: PEG as model polymer. J Pharm Sci 102(7):2254–2263

    Article  CAS  PubMed  Google Scholar 

  26. Voelkel A, Strzemiecka B, Milczewska K, Okulus Z (2015) Inverse gas chromatographic examination of polymer composites. Open Chem 13(1): 893–900

    Article  CAS  Google Scholar 

  27. Xia Y, Chen J, Wu Z, Wang T, Li J (2015) Measurement of solubility thermodynamic and diffusion kinetic characteristic of solvents in PDMS by inverse gas chromatography. Eur Polymer J 73:259–267

    Article  CAS  Google Scholar 

  28. Yao Z, Ge L, Ji X, Tang J, Xia M, Xi Y (2015) Surface properties studies of bivalve shell waste by the IGC technique: probing its significant potential application in the polymer industry. J Alloy Compd 621:389–395

    Article  CAS  Google Scholar 

  29. Yu Y, Li K, Ma Y, Wei L (2013) Determination of the solubility parameter of organosolv lignin by inverse gas chromatography. Chin J Chromatogr 31(2):143–146

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Abbasian.

Ethics declarations

Conflict of interest

Author Negin Farshchi declares that she has no conflict of interest. Author Ali Abbasian declares that he has no conflict of interest. Author Kambiz Larijani declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farshchi, N., Abbasian, A. & Larijani, K. Is Inverse Gas Chromatography (IGC) a Convenient Method to Determine Compatibility of Rubber Materials?. Chromatographia 82, 1709–1719 (2019). https://doi.org/10.1007/s10337-019-03791-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-019-03791-0

Keywords

Navigation