Skip to main content
Log in

Expanded flux variability analysis on metabolic network of Escherichia coli

  • Articles / Biophysics
  • Published:
Chinese Science Bulletin

Abstract

Flux balance analysis, based on the mass conservation law in a cellular organism, has been extensively employed to study the interplay between structures and functions of cellular metabolic networks. Consequently, the phenotypes of the metabolism can be well elucidated. In this paper, we introduce the Expanded Flux Variability Analysis (EFVA) to characterize the intrinsic nature of metabolic reactions, such as flexibility, modularity and essentiality, by exploring the trend of the range, the maximum and the minimum flux of reactions. We took the metabolic network of Escherichia coli as an example and analyzed the variability of reaction fluxes under different growth rate constraints. The average variability of all reactions decreases dramatically when the growth rate increases. Consider the noise effect on the metabolic system, we thus argue that the microorganism may practically grow under a suboptimal state. Besides, under the EFVA framework, the reactions are easily to be grouped into catabolic and anabolic groups. And the anabolic groups can be further assigned to specific biomass constitute. We also discovered the growth rate dependent essentiality of reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reed J L, Vo T D, Schilling C H, et al. An expanded genome-scale model of Escherichia coli K-12 (iJR904 (GSM/GPR). Genome Biol, 2003, 4: R54

    Article  Google Scholar 

  2. Duarte N C, Herrgard M J, Palsson B O. Reconstruction and validation of saccharomyces cerevisiae iND750, a fully compart-mentalized genome-scale metabolic model. Genome Res, 2004, 14: 1298–1309

    Article  Google Scholar 

  3. Edwards J S, Ibarra R U, Palsson B O. In silico pre- dictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nature Biotech, 2001, 19: 125–130

    Article  Google Scholar 

  4. Segre D, Vitkup D, Church G M. Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci USA, 2002, 99: 15112–15117

    Article  Google Scholar 

  5. Edwards J S, Covert M, Palsson B O. Metabolic modelling of microbes: the flux-balance approach. Environ Microbiol, 2002, 4: 133–140

    Article  Google Scholar 

  6. Price N D, Papin J A, Schilling C H, et al. Genome-scale microbial in silico models: the constraints-based approach. Trends Biotech, 2003, 21: 162–169

    Article  Google Scholar 

  7. Stelling J, Sauer U, Szallasi Z, et al. Robustness of cellular Functions. Cell, 2004, 118: 675–685

    Article  Google Scholar 

  8. Reed J L, Palsson B O. Genome-scale in silico models of E. coli have multiple equivalent phenotypic states: Assessment of coorelated reaction subsets that comprise network states. Genome Res, 2004, 14: 1797–1805

    Article  Google Scholar 

  9. Burgard A P, Nikolaev E V, Schilling C H, et al. Flux coupling analysis of genome-scale metabolic network reconstructions. Genome Res, 2004, 14: 301–312

    Article  Google Scholar 

  10. Klamt S, Gilles E D. Minimal cut sets in biochemical reaction networks. Bioinformatics, 2004, 20: 226–234

    Article  Google Scholar 

  11. Edwards J S, Palsson B O. The Escherichia coli MG1655 in silico metabolic genotype: Its definition, characteristics, and capabilities. Proc Natl Acad Sci USA, 2000, 297: 5528–5533

    Article  Google Scholar 

  12. Mahadevan R, Schilling C H. The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng, 2003, 5: 264–276

    Article  Google Scholar 

  13. Famili I, Foster J, Nielsen J, et al. Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network. Proc Natl Acad Sci USA, 2003, 100: 13134–13139

    Article  Google Scholar 

  14. Schuster S, Fell D A, Dandekar T. A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nature Biotech, 2000, 18: 326–332

    Article  Google Scholar 

  15. Edwards J S, Pallson B O. Robustness analysis of the Escherichia coli metabolic network. Biotech Prog, 2000, 16: 927–939

    Article  Google Scholar 

  16. Bilu Y, Shlomi T, Barkai N, et al. Conservation of expression and sequence of metabolic genes is reflected by activity across metabolic states. Plos Comput Biol, 2007, 2: 932–938

    Google Scholar 

  17. Wiback S, Famili I, Greenberg H, et al. Monte Carlo sampling can be used to determine the size and shape of the steady-state flux space. J Theoret Biol, 2004, 228: 437–447

    Article  Google Scholar 

  18. Price N, Reed J, Papin J, et al. Network-based analysis of metabolic regulation in the human red blood cell. J Theoret Biol, 2003, 225: 185–194

    Article  Google Scholar 

  19. Fong S, Joyce A, Palsson B. Parallel adaptive evolution cultures of Escherichia coli lead to convergent growth phenotypes with different gene expression states. Genome Res, 2005, 15: 1365–1372

    Article  Google Scholar 

  20. Fischer E, Sauer U. Large-scale in vivo flux analysis shows rigidity and suboptimal performance of Bacillus subtilis metabolism. Nature Genet, 2005, 37: 636–640

    Article  Google Scholar 

  21. Pfeiffer T, Schuster S, Bonhoeffer S. Cooperation and competition in the evolution of ATP-producing pathways. Science, 2002, 292: 504–507

    Article  Google Scholar 

  22. Kitano H. Biological robustness. Nature Rev Genet, 2004, 5: 826–837

    Article  Google Scholar 

  23. Stelling J, Klamt S, Bettenbrock K, et al. Metabolic network structure determines key aspects of fuctionality and regulation. Nature, 2002, 420: 190–193

    Article  Google Scholar 

  24. Meyers L A, Lee J F, Perthwaite M, et al. The Robustness of naturally and artificially selected nucleic acid secondary structures. J Mol Evolut, 2004, 58: 681–691

    Article  Google Scholar 

  25. Novak M, Pfeiffer T, Lenski R E, et al. Experimental tests for an evolutionary trade-off between growth rate and yield in E. coli. Am Nat, 2006, 168: 242–251

    Article  Google Scholar 

  26. Caste M E, Doyle J. Bow ties, metabolism and disease. Trends Biotech, 2004, 22: 446–450

    Article  Google Scholar 

  27. Papin P A, Reed J L, Palsson B O. Hierarchial thinking in network biology: the unbiased modularization of biochemical networks. Trends Biochem Sci, 2004, 29: 641–647

    Article  Google Scholar 

  28. Guimera R, Amaral A N. Functional cartography of complex metabolic networks. Nature, 2005, 433: 895–900

    Article  Google Scholar 

  29. Hartwell L H, Hopfield J J, Leibler S, et al. From molecular to modular cell biology. Nature, 1999, 402: C47–C52

    Article  Google Scholar 

  30. Papin J A, Price N D, Wiback S J, et al. Metabolic pathways in the post-genome era. Trends Biochem Sci, 2003, 28: 250–258

    Article  Google Scholar 

  31. Schuster S, Dandekar T, Fell D A. Detection of elementary flux mode in biochemical networks: A promising tool for pathway analysis and metabolic engineering. Trends Biochem Sci, 1999, 17: 53–60

    Google Scholar 

  32. Schilling C H, Cover M W, Famili I, et al. Genome-scale metabolic model of Helicobacter pylori. J Bacteriol, 2002, 184: 4582–4593

    Article  Google Scholar 

  33. Samal A, Singh S, Giri V, et al. Low degree metabolites explain essential reactions and enhance modularity in biological networks. BMC Bioinformatics, 2006, 7: 118–127

    Article  Google Scholar 

  34. Mahadevan R, Palsson B O. Properties of metabolic networks: Structure vs. function. Biophys J, 2005, 88: L7–L9

    Article  Google Scholar 

  35. Jeong H, Tombor B, Albert R, et al. The large-scale organization of metabolic network. Nature, 2000, 407: 651–654

    Article  Google Scholar 

  36. Jeong H, Mason S P, Barabasi A L, et al. Lethality and centrality in protein networks. Nature, 2001, 411: 41–42

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Ouyang.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 10721403), National Basic Research Program of China (Grant Nos. 2006CB910706, 2007CB814800, 2009CB918500), Chun-Tsung endowment at Peking University and National Fund for Fostering Talents of Basic Science (Grant No. J0630311)

Electronic supplementary material

About this article

Cite this article

Chen, T., Xie, Z. & Ouyang, Q. Expanded flux variability analysis on metabolic network of Escherichia coli . Chin. Sci. Bull. 54, 2610–2619 (2009). https://doi.org/10.1007/s11434-009-0341-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-009-0341-x

Keywords

Navigation