Skip to main content
Log in

When and how did plate tectonics begin? Theoretical and empirical considerations

  • Review
  • Published:
Chinese Science Bulletin

Abstract

Plate tectonics is the horizontal motion of Earth’s thermal boundary layer (lithosphere) over the convecting mantle (asthenosphere) and is mostly driven by lithosphere sinking in subduction zones. Plate tectonics is an outstanding example of a self organizing, far from equilibrium complex system (SOFFECS), driven by the negative buoyancy of the thermal boundary layer and controlled by dissipation in the bending lithosphere and viscous mantle. Plate tectonics is an unusual way for a silicate planet to lose heat, as it exists on only one of the large five silicate bodies in the inner solar system. It is not known when this mode of tectonic activity and heat loss began on Earth. All silicate planets probably experienced a short-lived magma ocean stage. After this solidified, stagnant lid behavior is the common mode of planetary heat loss, with interior heat being lost by delamination and “hot spot” volcanism and shallow intrusions. Decompression melting in the hotter early Earth generated a different lithosphere than today, with thicker oceanic crust and thinner mantle lithosphere; such lithosphere would take much longer than at present to become negatively buoyant, suggesting that plate tectonics on the early Earth occurred sporadically if at all. Plate tectonics became sustainable (the modern style) when Earth cooled sufficiently that decompression melting beneath spreading ridges made thin oceanic crust, allowing oceanic lithosphere to become negatively buoyant after a few tens of millions of years. Ultimately the question of when plate tectonics began must be answered by information retrieved from the geologic record. Criteria for the operation of plate tectonics includes ophiolites, blueschist and ultra-high pressure metamorphic belts, eclogites, passive margins, transform faults, paleomagnetic demonstration of different motions of different cratons, and the presence of diagnostic geochemical and isotopic indicators in igneous rocks. This record must be interpreted individually; I interpret the record to indicate a progression of tectonic styles from active Archean tectonics and magmatism to something similar to plate tectonics at ∼1.9 Ga to sustained, modern style plate tectonics with deep subduction—and powerful slab pull—beginning in Neoproterozoic time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Witze A. The start of the world as we know it. Nature, 2006, 442: 128–131

    Article  Google Scholar 

  2. Condie K C, Kröner A, Stern R J. Penrose Conference Report: When did plate tectonics begin? GSA Today, 2006, 16(10): 40–41

    Article  Google Scholar 

  3. Stern R J. Evidence from ophiolites, blueschists, and ultra-high pressure metamorphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time. Geology, 2005, 33: 557–560

    Article  Google Scholar 

  4. Cawood P A, Kröner A, Pisarevsky S. Precambrian plate tectonics: Criteria and evidence. GSA Today, 2006, 16(7): 4–11

    Article  Google Scholar 

  5. Cox A. Plate Tectonics. Oxford: Blackwell, 1986

    Google Scholar 

  6. Forsyth D, Uyeda S. On the relative importance of the driving forces of plate motions. Geophys J R Astr Soc, 1975, 43: 163–200

    Google Scholar 

  7. MELT-Seismic-Team. Imaging the deep seismic structure of a mid-ocean ridge. Science, 1998, 280: 1215–128

    Article  Google Scholar 

  8. Alvarez W. Geologic evidence for the plate-driving mechanism: The continental undertow hypothesis and the Australian-Antarctic Discordance. Tectonics, 1990, 9: 1213–1220

    Article  Google Scholar 

  9. Doglioni C, Carminati E, Cuffaro M. Simple kinematics of subduction zones. Int Geol Rev, 2006, 48: 479–493

    Google Scholar 

  10. Bird P. Testing hypotheses on plate-driving mechanisms with global lithosphere models including topography, thermal structure, and faults. J Geophys Res, 1998, 103(B5): 10115–10129

    Article  Google Scholar 

  11. Bokelmann G H R. Which forces drive North America? Geology, 2002, 30: 1027–1030

    Article  Google Scholar 

  12. Liu Z, Bird P. North America plate is driven westward by lower mantle flow. Geophys Res Lett, 2002, 29(24): doi: 10.1029/2002GL016002

  13. Gurnis M, Mueller R D. The origin of the Australian Antarctic Discordance from an ancient slab and mantle wedge. In: Hillis R R, Mueller R D, eds. The Evolution and Dynamics of the Australian Plate. Boulder: Geological Society of America, 2003

    Google Scholar 

  14. Davies G F, Richards M A. Mantle convection. J Geol, 1992, 100: 151–206

    Article  Google Scholar 

  15. Lithgow-Bertelloni C, Richards M A. The dynamics of Cenozoic and Mesozoic plate motions. Rev Geophys, 1998, 36: 27–78

    Article  Google Scholar 

  16. Hynes A. Buoyancy of the oceanic lithosphere and subduction initiation. Int Geol Rev, 2005, 47: 938–951

    Google Scholar 

  17. Oxburgh E R, Parmentier E M. Compositional and density stratification in oceanic lithosphere-Causes and consequences. J Geol Soc London, 1977, 133: 343–355

    Google Scholar 

  18. van der Hilst R, Engdahl R, Spakman W, et al. Tomographic imaging of subducted lithosphere below Northwest Pacific island arcs. Nature, 1991, 353: 37–43

    Article  Google Scholar 

  19. Conrad C P, Lithgow-Bertelloni C. How mantle slabs drive plate tectonics. Science, 2002, 298(5591): 207–209

    Article  Google Scholar 

  20. Conrad C P, Lithgow-Bertelloni C. The temporal evolution of plate driving forces: Importance of “slab suction” versus “slab pull” during the Cenozoic. J Geophys Res, 2004, 109(B10407): doi: 10.1029/2004JB0022991

  21. Garfunkel Z, Anderson C A, Schubert G. Mantle circulation and the lateral migration of subducted slabs. J Geophy Res, 1986, 91(B7): 7205–7223

    Google Scholar 

  22. Buffett B A, Rowley D B. Plate bending at subduction zones: Consequences for the direction of plate motions. Earth Planet Sci Lett, 2006, 245: 359–364

    Article  Google Scholar 

  23. Ranero C R, Phipps M J, Mcintosh K, et al. Bending-related faulting and mantle serpentinization at the Middle America trench. Nature, 2003, 425: 367–373

    Article  Google Scholar 

  24. Anderson D L. Top-Down Tectonics? Science, 2001, 293: 2016–2018

    Article  Google Scholar 

  25. Sleep N L. Evolution of the mode of convection within terrestrial planets. J Geophys Res, 2000, 105(E7): 17563–17578

    Article  Google Scholar 

  26. Stevenson D J. Styles of mantle convection and their influence on planetary evolution. C R Geosci, 2003, 335: 99–111

    Article  Google Scholar 

  27. Anderson DL. Theory of the Earth. Oxford: Blackwell, 1989

    Google Scholar 

  28. Abe Y. Thermal and chemical evolution of the terrestrial magma ocean. Phys Earth Planet Inter, 1997, 100: 27–39

    Article  Google Scholar 

  29. Tonks W B, Melosh H J. Magma ocean formation due to giant impacts. J Geophys Res, 1993, 98(E3): 5319–5333

    Google Scholar 

  30. Solomatov V S, Moresi L N. Stagnant lid convection on Venus. J Geophys Res, 1996, 101(E2): 4737–4754

    Article  Google Scholar 

  31. Phillips R J, Hansen V L. Geological evolution of Venus: rises, plains, plumes, and plateaus. Science, 1998, 279: 1492–1497

    Article  Google Scholar 

  32. Connerney J E P, Acuña M H, Wasilewski P J, et al. Magnetic lineations in the ancient crust of Mars. Science, 1999, 284: 794–798

    Article  Google Scholar 

  33. Rieder R, Economou T, Wanke H, et al. The Chemical composition of Martian soil and rocks returned by the mobile alpha proton X-ray spectrometer: preliminary results from the X-ray mode. Science, 1997, 278(5344): 1771–1774

    Article  Google Scholar 

  34. Strom R G, Schaber G G, Dawson D D. The global resurfacing of Venus. J Geophys Res, 1995, 99: 10899–10926

    Article  Google Scholar 

  35. Nimmo F. Tectonic consequences of Martian dichotomy modification by lower-crustal flow and erosion. Geology, 2005, 33(7): 533–536

    Article  Google Scholar 

  36. Korenaga J. Archean geodynamics and the thermal evolution of Earth, in Archean Geodynamic Processes. In: Benn K, Mareschal J C, Condie K, eds. Geophysical Monograph 164. Washington D C: AGU, 2006. 7–32

    Google Scholar 

  37. Schubert G D, Stevenson D, Cassen P. Whole planet cooling and the radiogenic heat source contents of the Earth and Moon. J Geophys Res, 1980, 85: 2531–2538

    Google Scholar 

  38. Butler S L, Peltier W R. Thermal evolution of Earth: Models with time-dependent layering of mantle convection which satisfy the Urey ratio constraint. J Geophys Res, 2002, 107(B6): doi: 10.1029/2000JB000018

  39. Anderson D L. Large igneous provinces, delamination, and fertile mantle. Elements, 2005, 1: 271–275

    Google Scholar 

  40. Davies G F. Conjectures on the thermal and tectonic evolution of the Earth. Lithos, 1993, 30: 281–289

    Article  Google Scholar 

  41. Bédard J H. A catalytic delamination-driven model for coupled genesis of Archean crust and sub-continental lithospheric mantle. Geochim Cosmochim Acta, 2006, 70: 1188–1214

    Article  Google Scholar 

  42. Prigogine I, Stengers I. Order Out of Chaos. New York: Bantam, 1984. 349

    Google Scholar 

  43. Anderson D L. Plate tectonics as a far-from-equilibrium self-organized system. In: Stein S, Freymueller J T, eds. Plate Boundary Zones. Washington DC: American Geophysical Union, 2002. 411–425

    Google Scholar 

  44. McKenzie D, Bickle M J. The volume and composition of melt generated by extension of the lithosphere. J Petrol, 1988, 29: 625–679

    Google Scholar 

  45. Nisbet E G, Cheadle M J, Arndt N T, et al. Constraining the potential temperature of the Archean mantle: A review of the evidence from komatiites. Lithos, 1993, 30: 291–307

    Article  Google Scholar 

  46. Davies G F. On the emergence of plate tectonics. Geology, 1992, 20: 963–966

    Article  Google Scholar 

  47. Parsons B. Causes and consequences of the relation between area and age of the sea floor. J Geophys Res, 1982, 87: 289–302

    Google Scholar 

  48. Gurnis M, Hall C, Lavier L. Evolving force balance during incipient subduction. Geochem Geophys Geosyst, 2004, 5(Q07001): doi: 10.1029/2003GC000681

  49. Toth J, Gurnis M. Dynamics of subduction initiation at preexisting fault zones. J Geophys Res, 1998, 103(B8): 18053–18067

    Article  Google Scholar 

  50. Stern R J. Subduction initiation: spontaneous and induced. Earth Planet Sci Lett, 2004, 226: 275–292

    Article  Google Scholar 

  51. Mei S, Kohlstedt D L. Influence of water on plastic deformation of olivine aggregates, 1. Diffusion creep regime. J Geophys Res, 2000, 105(B9): 21457–21470

    Article  Google Scholar 

  52. Regenauer-Lieb K, Yuen D A, Branlund J. The initiation of subduction: criticality by addition of water? Science, 2001, 294(5542): 578–580

    Article  Google Scholar 

  53. Clift P, Vannucchi P. Controls on tectonic accretion versus erosion in subduction zones: implications for the origins and recycling of the continental crust. Rev Geophys, 2004, 42: doi: 10.1029/2003RG000127

  54. Jull M, Kelemen P B. On the conditions for lower crustal convective instability. J Geophys Res, 2001, 106(B4): 6423–6446

    Article  Google Scholar 

  55. Kusky T M, Li J H, Tucker R T. The Dongwanzi ophiolite: complete Archean ophiolite with extensive sheeted dike complex, North China craton. Science, 2001, 292: 1142–1145

    Article  Google Scholar 

  56. Zhai M, Zhao G, Zhang Q, et al. Is the Dongwanzi Complex an Archean ophiolite? Science, 2002, 295: 923–923

    Article  Google Scholar 

  57. Scott D J, Helmstaedt H, Bickle M J. Purtuniq ophiolite, Cape Smith Belt, northern Quebec, Canada: A reconstructed section of early Proterozoic oceanic crust. Geology, 1992, 20: 173–176

    Article  Google Scholar 

  58. Peltonen P, Kontinen A, Huhma H. Petrology and geochemistry of metabasalts from the 1.95 Ga Jormua ophiolite, northeastern Finland. J Petrol, 1996, 37(6): 1359–1383

    Article  Google Scholar 

  59. Maruyama S, Liou J G, Terabayashi M. Blueschists and eclogites of the world and their exhumation. Int Geol Rev, 1996, 38, 490–596

    Article  Google Scholar 

  60. Ernst W G. High-pressure and ultrahigh-pressure metamorphic belts — Subduction, recrystallization, exhumation, and significance for ophiolite studies. In: Dilek Y, Newcombe S, eds. Ophiolite Concept and Evolution of Geological Thought. Boulder: Geological Society of America. Special Paper 373, 2003. 365–384

    Google Scholar 

  61. Abers G A, Van Keken P E, Kneller E A, et al. The thermal structure of subduction zones constrained by seismic imaging: Implications for slab dehydration and wedge flow. Earth Planet Sci Lett, 2006, 241: 387–397

    Article  Google Scholar 

  62. Maekawa H, Fryer P, Ozaki A. Incipient Blueschist-facies metamorphism in the active subduction zone beneath the Mariana Forearc. In: Taylor B, Natland J, eds. Active Margins and Marginal Basins of the Western Pacific. Washington D C: American Geophysical Union, 1995. 281–289

    Google Scholar 

  63. Zhang H, Thurber C H, Shelly D, et al. High-resolution subducting-slab structure beneath northern Honshu, revealed by double-difference tomography. Geology, 2004, 32(4): 361–364

    Article  Google Scholar 

  64. Roever W P d. On the cause of the preferential distribution of certain metamorphic minerals in orogenic belts of different age. Geol Rundschau, 1964, 54: 933–941

    Article  Google Scholar 

  65. Shu L, Charvet J. Kinematics and geochronology of the Proterozoic Dongxiang-Shexian ductile shear zone: With HP metamorphism and ophiolitic melange (Jiangnan Region, South China). Tectonophysics, 1996, 267: 291–302

    Article  Google Scholar 

  66. Moyen J F, Stevens G, Kisters A. Record of mid-Archean subduction from metamorphism in the Barberton terrain, South Africa. Nature, 2006, 442(3): 559–562

    Article  Google Scholar 

  67. Peacock S M. Thermal structure and metamorphic evolution of subducting slabs. In: Eiler J, eds. Inside the Subduction Factory, Geophysical Monograph 138. Washington D C: AGU, 2002. 7–22

    Google Scholar 

  68. Liou J G, Tsujimori T, Zhang R Y, et al. Global UHP metamorphism and continental subduction/collision: The Himalayan model. Int Geol Rev, 2004, 46: 1–27

    Google Scholar 

  69. Jahn B M, Caby R, Monie P. The oldest UHP eclogites of the world: Age of UHP metamorphism, nature of protoliths and tectonic implications. Chem Geol, 2001, 178: 143–158

    Article  Google Scholar 

  70. Maruyama S, Liou J G. Ultrahigh-pressure metamorphism andits significance on the Proterozoic-Phanerozoic boundary. The Island Arc, 1998, 7: 6–35

    Article  Google Scholar 

  71. Tsujimori T, Sisson V B, Liou J G, et al. Very-low-temperature record of the subduction process: A review of worldwide lawsonite eclogites. Lithos, 2006, 609–624

  72. Brown M. A duality of thermal regimes is the hallmark of plate tectonics since the Neoarchean. Geology, 2006, 34: 961–964

    Article  Google Scholar 

  73. Sleep N H. Archean plate-tectonics — what can be learned from continental geology? Can J Earth Sci, 1992, 29: 2066–2071

    Article  Google Scholar 

  74. Sleep N H. Evolution of the continental lithosphere. Annu Rev Earth Planet Sci, 2005, 33: 360–393

    Article  Google Scholar 

  75. Koenig E, Aydin A. Evidence for large-scale strike-slip faulting on Venus. Geology, 1998, 26(6): 551–554

    Article  Google Scholar 

  76. Tuckwell G W, Ghail R C. A 400-km-scale strike-slip zone near the boundary of Thetis Regio, Venus. Earth Planet Sci Lett, 2003, 211: 45–55

    Article  Google Scholar 

  77. Scotese C R. A continental drift flipbook. J Geol, 2004, 112: 729–741

    Article  Google Scholar 

  78. Pesonen L J, Elming S A, Mertanen S, et al. Palaeomagnetic configuration of continents during the Proterozoic. Tectonophysics, 2003, 375: 289–324

    Article  Google Scholar 

  79. Pisarevsky S A, McElhinny M W. Global paleomagnetic data base developed into its visual form. EOS, Trans Am Geophys Union, 2003, 84: 192

    Google Scholar 

  80. Powell C M, Jones D L, Pisarevsky S, et al. Paleomagnetic constraints on the position of the Kalahari craton in Rodinia. Precambrian Res, 2001, 110: 33–46

    Article  Google Scholar 

  81. Stern R J. Subduction zones. Rev Geophys, 2002, 40: 1012, doi: 10.1029/2001RG000108

    Article  Google Scholar 

  82. Pearce J A, Cann J R. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet Sci Lett, 1973, 19: 290–300

    Article  Google Scholar 

  83. Shervais J W. T-V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet Sci Lett, 1982, 59: 101–118

    Article  Google Scholar 

  84. Kerrich R, Polat A. Archean greenstone-tonalite duality: Thermochemical mantle convection models or plate tectonics in the early Earth global dynamics? Tectonophysics, 2006, 415: 141–164

    Article  Google Scholar 

  85. Pearce J A, Peate D W. Tectonic Implications of the Composition of Volcanic Arc Magmas. Annu Rev Earth Planet Sci, 1995, 23: 251–285

    Article  Google Scholar 

  86. Boyet M, Carlson R W. 142Nd evidence for early (> 4.53 Ga) global differentiation of the silicate Earth. Science, 2005, 309: 576–581

    Article  Google Scholar 

  87. MacGregor I D, Manton W I. Roberts Victor eclogites: Ancient oceanic crust. J Geophys Res, 1986, B91: 14063–14079

    Article  Google Scholar 

  88. Schulze D E, Harte B, Valley J W, et al. Extreme crustal oxygen isotope signatures preserved in coesite in diamond. Nature, 2003, 423: 68–70

    Article  Google Scholar 

  89. Farquhar J, Wing B A, Mckeegan K D, et al. Mass-independent sulfur of inclusions in diamond and sulfur recycling on the early Earth. Science, 2002, 298: 2369–2372

    Article  Google Scholar 

  90. Hoffman P F, Schrag D P. The snowball Earth hypothesis: Testing the limits of global change. Terra Nova, 2002, 14: 129–155

    Article  Google Scholar 

  91. Goldreich P, Toomre A. Some remarks on polar wandering. J Geophys Res, 1969, 74(10): 2555–2567

    Google Scholar 

  92. Harrison T M, Blichert-Toft J, Muller W, et al. Heterogeneous Hadean hafnium: Evidence for continental crust at 4.4 to 4.5 Ga. Science, 2005, 310: 1947–1950

    Article  Google Scholar 

  93. Hamilton W. An alternative Earth. GSA Today, 2003, 13(11): 4–12

    Article  Google Scholar 

  94. Condie K C. Episodic continental growth models: Afterthoughts and Extensions. Tectonophysics, 2000, 322: 153–162

    Article  Google Scholar 

  95. Balashov Y A, Glaznev V N. Endogenic cycles and the problem of crustal growth. Geochem Int, 2006, 44(2): 131–140

    Article  Google Scholar 

  96. Tatsumi Y. The subduction factory: How it operates in the evolving Earth. GSA Today, 2005, 15(7): 4–10

    Article  Google Scholar 

  97. Scholl D W, Huene R V. Crustal recycling at modern subduction zones applied to the past — issues of growth and preservation of continental basement, mantle geochemistry, and supercontinent reconstruction. In: Hatcher J R D, et al, eds. The 4D Framework of Continental Crust. Boulder: Geological Society of America, Special Paper, 2007

    Google Scholar 

  98. Allen P A. Snowball Earth on Trial. EOS Trans Am Geophys Union, 2006, 87(45): 495

    Google Scholar 

  99. Maloof A C, Halverson G P, Kirschvink J L, et al. Combined paleomagnetic, isotopic, and stratigraphic evidence for true polar wander from the Neoproterozoic Akademikerbreen Group, Svalbard, Norway. Geol Soc Am Bull, 2006, 118: 1099–1124

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the US National Science Foundation (Grant No. 0405651)

About this article

Cite this article

Stern, R.J. When and how did plate tectonics begin? Theoretical and empirical considerations. CHINESE SCI BULL 52, 578–591 (2007). https://doi.org/10.1007/s11434-007-0073-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-007-0073-8

Keywords

Navigation