Skip to main content
Log in

The progress of olfactory transduction and biomimetic olfactory-based biosensors

  • Review
  • Bioengineering
  • Published:
Chinese Science Bulletin

Abstract

Olfaction is a very important sensation for all animals. Recently great progress has been made in the research of olfactory transduction. Especially the novel finding of the gene superfamily encoding olfactory receptors has led to rapid advances in olfactory transduction. These advances also promoted the research of biomimetic olfactory-based biosensors and some obvious achievements have been obtained due to their potential commercial prospects and promising industrial applications. This paper briefly introduces the biological basis of olfaction, summarizes the progress of olfactory signal transduction in the olfactory neuron, the olfactory bulb and the olfactory cortex, outlines the latest developments and applications of biomimetic olfactory-based biosensors. Finally, the olfactory biosensor based on light addressable potentiometric sensor (LAPS) is addressed in detail based on our recent work and the research trends of olfactory biosensors in future are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buck L, Axel R. A novel multigene family may encode odorant receptors: A molecular basis for odor recognition. Cell, 1991, 65: 175–187

    Article  Google Scholar 

  2. Dryer L, Berghard A. Odorant receptors: a plethora of G-protein-coupled receptors. Trends Pharmacol Sci, 1999, 20: 413–417

    Article  Google Scholar 

  3. Sullivan S L, Ressler K, Buck L B. Spatial patterning and information coding in the olfactory system. Curr Opin Genet Dev, 1995, 5: 516–523

    Article  Google Scholar 

  4. Mori K, Nagao H, Yoshihara Y. The olfactory bulb: Coding and processing of odor molecule information. Science, 1999, 286: 711–715

    Article  Google Scholar 

  5. Ache B W, Young J M. Olfaction: Diverse species, conserved principles. Neuron, 2005, 48: 417–430

    Article  Google Scholar 

  6. Lewcock J W, Reed R R. Ors rule the roost in the olfactory system. Science, 2003, 302: 2078–2079

    Article  Google Scholar 

  7. Nakamura T. Cellular and molecular constituents of olfactory sensation in vertebrates. Comp Biochem Physiol A: Physiol, 2000, 126: 17–32

    Article  Google Scholar 

  8. Reisert J, Lai J, Yau K W, et al. Mechanism of the excitatory Cl response in mouse olfactory receptor neurons. Neuron, 2005, 45: 553–561

    Article  Google Scholar 

  9. Ressler K J, Sullivan S L, Buck L B. Information coding in the olfactory system: Evidence for a stereotyped and highly organized epitope map in the olfactory bulb. Cell, 1994, 79: 1245–1255

    Article  Google Scholar 

  10. Liedo P M, Gheusi G, Vincent J D. Information processing in the mammalian olfactory system. Physiol Rev, 2005, 85: 281–317

    Article  Google Scholar 

  11. Vosshall L B. Putting smell on the map. Trends Neurosci, 2003, 26: 169–170

    Article  Google Scholar 

  12. Xu F Q. That’s your left foot and.... Trends Neurosci, 2001, 24: 549–550

    Article  Google Scholar 

  13. Carlson J R. Viewing odors in the mushroom body of the fly. Trends Neurosci, 2001, 24: 497–498

    Article  Google Scholar 

  14. Kay L M, Stopfer M. Information processing in the olfactory systems of insects and vertebrates. Semin Cell Dev Biol, 2006, 17: 433–442

    Article  Google Scholar 

  15. Aungst J L, Heyward P M, Puche A C, et al. Centre-surround inhibition among olfactory bulb glomeruli. Nature, 2003, 426: 623–629

    Article  Google Scholar 

  16. Leon M, Johnson B A. Olfactory coding in the mammalian olfactory bulb. Brain Res Rev, 2003, 42: 23–32

    Article  Google Scholar 

  17. Hallem E A, Carlson J R. The odor coding system of Drosophlia. Trend Genet, 2004, 20: 453–459

    Article  Google Scholar 

  18. Zhou Z H, Buck L B. Combinatorial effects of odorant mixes in olfactory cortex. Science, 2006, 311: 1477–1481

    Article  Google Scholar 

  19. Sun A, Yang Y, Jiang Y L, et al. Electro-mass olfactory multi-sensor (emms). Sens Actuators B Chem, 2000, 66: 88–93

    Article  Google Scholar 

  20. Wu T Z. A piezoelectric biosensor as an olfactory receptor for odour detection: electronic nose. Biosens Bioelectron, 1999, 14: 9–18

    Article  Google Scholar 

  21. Ko H J, Park T H. Piezoelectric olfactory biosensor: Ligand specificity and dose-dependence of an olfactory receptor expressed in a heterologous cell system. Biosens Bioelectron, 2005, 20: 1327–1332

    Article  Google Scholar 

  22. Sung J H, Ko H J, Park T H. Piezoelectric biosensor using olfactory receptor protein expressed in Escherichia coli. Biosens Bioelectron, 2006, 21: 1981–1986

    Article  Google Scholar 

  23. Fromherz P, Offenhausser A, Vetter T, et al. Aneuron-silicon junction: A Retzius cell of the leech on an insulated-gate field effect transistor. Science, 1991, 252: 1290–1293

    Article  Google Scholar 

  24. Schütz S, Schoning M J, Schroth P, et al. An insect-based biofet as a bioelectronic nose. Sens Actuators B Chem, 2000, 65: 291–295

    Article  Google Scholar 

  25. Huotari M J. Biosensing by insect olfactory receptor neurons. Sens Actuators B Chem, 2000, 71: 212–222

    Article  Google Scholar 

  26. Ivic L, Zhang C, Zhang X, et al. Intracellur trafficking of a targed and functional mammalian olfactory receptor. J Neurobiol, 2002, 50: 56–68

    Article  Google Scholar 

  27. Rich R L, Myszka D G. Advances in surface plasmon resonance biosensor analysis. Curr Opin Biotechnol, 2000, 11: 54–61

    Article  Google Scholar 

  28. Lee J Y, Ko H J, Park T H. Cell-based measurement of odorant molecules using surface plasmon resonance. Enzyme Microb Technol, 2006, 39: 375–380

    Article  Google Scholar 

  29. Ismail A B, Yoshinobu T, Iwasaki H, et al. Investigation on light-addressable potentiometric sensor as a possible cell-semiconductor hybrid. Biosens Bioelectron, 2003, 18: 1509–1514

    Article  Google Scholar 

  30. Stein B, George M, Gaub H E, et al. Extracellular measurement of averaged ionic currents with the light-addressable potentiometric sensor (LAPS). Sens Actuators B Chem, 2004, 98: 299–304

    Article  Google Scholar 

  31. Xu G X, Ye X S, Qin L F, et al. Cell-based biosensors based on light-addressable potentiometric sensors for single cell monitoring. Biosens Bioelectron, 2005, 20: 1757–1763

    Article  Google Scholar 

  32. Liu Q J, Cai H, Wang P, et al. Olfactory cell-based biosensor: A first step towards a neurochip of bioelectronic nose. Biosens Bioelectron, 2006, 22: 318–322

    Article  Google Scholar 

  33. Wang P. Artificial Olfaction and Taste (in Chinese), Beijing: Science Press, 2000

    Google Scholar 

  34. Li Y, Liu Q J, Xu Y, et al. The development of taste transduction and taste chip technology. Chin Sci Bull, 2005, 50(14): 1425–1433

    Google Scholar 

  35. Wang P, Xu G X, Qin L F, et al. Cell-based biosensors and its application in biomedicine. Sens Actuators B Chem, 2005, 108: 576–584

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Ping.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 30627002) and the Foundation of Zhejiang Province for Outstanding Talents (Grant No. R205502)

About this article

Cite this article

Wu, C., Wang, L., Zhou, J. et al. The progress of olfactory transduction and biomimetic olfactory-based biosensors. Chin. Sci. Bull. 52, 1886–1896 (2007). https://doi.org/10.1007/s11434-007-0295-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-007-0295-9

Keywords

Navigation