Skip to main content
Log in

Effects of tectonic stress field and Poisson’s ratio on stress state within the San Andreas Fault zone

  • Article
  • Geophysics
  • Published:
Chinese Science Bulletin

Abstract

We used a mechanics conceptual model to provide another perspective to understand the mechanical environment of the San Andreas Fault (SAF), and a possible mechanism that the principal stress state in the SAF is not only affected by remote tectonic stress but also by Poisson’s ratio. For a strike-slip fault like the SAF, we found that in the fault zone with Poisson’s ratio of >0.25, effective friction coefficient and the stress ratio (minimum principal stress/maximum principal stress) are less than 0.1 and 0.8–1.0, respectively, corresponding to remote tectonic stress ratio of 0.36–1.0, and that the higher the Poisson’s ratio, the greater the principal stress rotates. For hydrostatic pore pressure and a received tectonic stress ratio of 0.5 around the SAF, the model predicts that the SAF has a very high Poisson’s ratio (~0.45), which accommodates extremely low effective friction coefficient (0.09) and large stress ratio (0.84) or smaller shear stress (17 MPa).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mount VS, Suppe J (1987) State of stress near the San Andreas Fault: implications for wrench tectonics. Geology 15:1143–1146

    Article  Google Scholar 

  2. Zoback MD, Zoback ML, Mount VS et al (1987) New evidence on the state of stress of the San Andreas Fault system. Science 238:1105–1111

    Article  Google Scholar 

  3. Provost AS, Houston H (2001) Orientation of the stress field surrounding the creeping section of the San Andreas Fault: evidence for a narrow mechanically weak fault zone. J Geophys Res 106:11373–11386

    Article  Google Scholar 

  4. Townend J, Zoback MD (2000) How faulting keeps the crust strong. Geology 28:399–402

    Article  Google Scholar 

  5. Zoback MD, Hickman S, Ellsworth W et al (2011) Scientific drilling into the San Andreas Fault zone—An overview of SAFOD’s first five years. Sci Drill 11:14–28

    Article  Google Scholar 

  6. Scholz CH (2000) Evidence for a strong San Andreas Fault. Geology 28:163–166

    Article  Google Scholar 

  7. Byerlee JD (1978) Friction of rocks. Pure Appl Geophys 116:615–626

    Article  Google Scholar 

  8. Rice JR (1992) Fault stress states, pore pressure distributions, and the weakness of the San Andreas Fault. In: Evans B, Wong TF (eds) Fault mechanics and transport properties of rock: a festschrift in Honor of Brace WF. Academic, San Diego, pp 475–503

    Chapter  Google Scholar 

  9. Hickman S, Zoback MD (2004) Stress orientations and magnitudes in the SAFOD Pilot Hole. Geophys Res Lett 31:L15S12. doi:10.1029/2004GL020043

    Google Scholar 

  10. Tembe S, Lockner D, Wong TF (2009) Constraints on the stress state of the San Andreas Fault with analysis based on core and cuttings from San Andreas Fault Observatory at Depth (SAFOD) drilling phases 1 and 2. J Geophys Res 114:B11401. doi:10.1029/2008JB005883

    Article  Google Scholar 

  11. Lockner DA, Morrow C, Moore D et al (2011) Low strength of deep San Andreas Fault gouge from SAFOD core. Nature 472:82–85

    Article  Google Scholar 

  12. Faulkner DR, Mitchell TM, Healy D et al (2006) Slip on ‘weak’ faults by the rotation of regional stress in the fracture damage zone. Nature 444:922–925

    Article  Google Scholar 

  13. Chéry J, Zoback MD, Hickman S (2004) A mechanical model of the San Andreas Fault and SAFOD pilot hole stress measurements. Geophys Res Lett 31:L15S13. doi:10.1029/2004GL019521

    Article  Google Scholar 

  14. Townend J, Zoback MD (2004) Regional tectonic stress near the San Andreas fault in central and southern California. Geophys Res Lett 31:L15S11. doi:10.1029/2003GL018918

    Article  Google Scholar 

  15. Wang CY (1984) On the constitution of the San Andreas Fault zone in central California. J Geophys Res 89:5858–5866

    Article  Google Scholar 

  16. Boness NL, Zoback MD (2004) Stress-induced seismic velocity anisotropy and physical properties in the SAFOD Pilot Hole in Parkfield, CA. Geophys Res Lett 31:L15S17. doi:10.1029/2003GL019020

    Article  Google Scholar 

  17. Zhao P, Peng Z, Shi Z et al (2009) Variations of the velocity contrast and rupture properties of M6 earthquakes along the Parkfield section of the San Andreas Fault. Geophys J Int 180:765–780

    Article  Google Scholar 

  18. Zhao D, Kanamori H, Negishi H et al (1996) Tomography of the source area of the 1995 Kobe earthquake: evidence for fluids at the hypocenter? Science 274:1891–1894

    Article  Google Scholar 

  19. Zhao D, Ochi F, Hasegawa A et al (2000) Evidence for the location and cause of large crustal earthquakes in Japan. J Geophys Res 105:13579–13594

    Article  Google Scholar 

  20. Salah MK, Zhao D (2003) 3-D seismic structure of Kii Peninsula in southwest Japan: evidence for slab dehydration in the forearc. Tectonophysics 364:191–213

    Article  Google Scholar 

  21. Audet P, Bostock MG, Christensen NI et al (2009) Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing. Nature 457:76–78

    Article  Google Scholar 

  22. Jaeger JC, Cook NGW (1979) Fundamentals of rock mechanics, 3rd edn. Chapman and Hall, London

    Google Scholar 

  23. Wang X, Schubnel A, Fortin J et al (2012) High V p/V s ratio: saturated cracks or anisotropy effects? Geophys Res Lett 39:L11307. doi:10.1029/2012GL051742

    Article  Google Scholar 

  24. Lachenbruch AH, Sass JH (1992) Heat flow from Cajon Pass, fault strength, and tectonic implications. J Geophys Res 97:4995–5015

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (41074070) and Special Research Project in Earthquake Science of China (200808068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongen Cai.

About this article

Cite this article

Xie, Z., Cai, Y. Effects of tectonic stress field and Poisson’s ratio on stress state within the San Andreas Fault zone. Chin. Sci. Bull. 59, 2994–2998 (2014). https://doi.org/10.1007/s11434-014-0216-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0216-7

Keywords

Navigation