Skip to main content
Log in

Thirty million year deep sea records in the South China Sea

  • Articles
  • Published:
Chinese Science Bulletin

Abstract

In the spring of 1999 the Ocean Drilling Program (ODP) Leg 184 Shipboard Party cored 17 holes at 6 deep water sites in the northern and southern parts of the South China Sea (SCS). Chinese scientists actively participated in the entire process of this first deep-sea drilling leg off China, from proposal to post-cruise studies. More than 30 categories of analyses have been conducted post-cruise in various Chinese laboratories on a large number of core samples, and the total number of analyses exceeded 60 thousand. The major scientific achievements of the Leg 184 studies are briefly reported in three successive papers, with the first one presented here dealing with deep-sea stratigraphy and evolution of climate cycles. This ODP leg has established the best deep-sea stratigraphic sequences in the Western Pacific: the 23-Ma isotope sequence from the Dong-Sha area is unique worldwide because of its continuity; the last 5-Ma sequence from the Nansha area represents one of the best 4 ODP sites worldwide with the highest time-resolution for that time interval, and the sequences of physical properties enable a decadal-scale time resolution. All these together have provided for the first time high-quality marine records for paleoenvironmental studies in the Asian-Pacific region. This new set of stratigraphic records has revealed changes in climate cyclicity over the last 20 Ma with the fluctuating power of the 100 ka, 400 ka, 2000 ka eccentricity cycles, indicating the evolving response of the climate system to orbital forcing along with the growth of the Antarctic and Northern Hemisphere ice sheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, P., Prell, W., Blum, P. et al., Proceedings of Ocean Drilling Program, Initial Reports, Volume 184, College Station: Ocean Drilling Program, 2000, 77.

    Google Scholar 

  2. Zhao, Q., Jian, Z., Wang, J. et al., Neogene oxygen isotopic stratigraphy, ODP Site 1148, northern South China Sea, Science in China, Ser. D, 2001, 44(10): 934–942.

    Article  Google Scholar 

  3. Zhao, Q., Wang, P., Cheng, X. et al., A record of Miocene carbon excursions in the South China Sea, Science in China, Ser. D, 2001, 44(10): 943–951.

    Article  Google Scholar 

  4. Tian, J., Wang, P., Cheng, X. et al., Astronomically tuned PlioPleistocene benthic δ18O record from South China Sea and Atlantic-Pacific comparison, Earth and Planetary Science Letters, 2002, 203: 1015–1029.

    Article  Google Scholar 

  5. Wang, P., Tian, J., Cheng, X., Transition of Quaternary glacial cyclicity in deep-sea records at Nansha, the South China Sea, Science in China, Ser. D, 2001, 44(10): 926–933.

    Article  Google Scholar 

  6. Shao, L., Li, X., Wei, G. et al., Provenance of a prominent sediment drift on the northern slope of the South China Sea, Science in China, Ser. D, 2001, 44(10): 919–125.

    Article  Google Scholar 

  7. Li, B., Jian, Z., Evolution of planktonic foraminifera and thermocline in the southern South China Sea since 12 Ma (OSP-184), Site 1143), Science in China, Ser. D, 2001, 44(10): 889–896.

    Article  Google Scholar 

  8. Shackleton, N. J., Hall, M. A., Pate, D., Pliocene stable isotope stratigraphy of Site 846 (eds. Pisias, G., Mayer, L. A., Janecek, T. R. et al.), Proc. ODP Sci. Results, 1995, 138: 337–355.

  9. Mix, A., Pisias, N. G., Rugh, W. et al., Benthic foraminifer stable isotope record from Site 849 (0–5 Ma): Local and global climate changes (eds. Pisias, N. G., Mayer, L. A., Janecek, T. R. et al.), Proc ODP Sci Results, 1995, 138: 371–412.

    Google Scholar 

  10. Tiedemann, R., Sarnthein, M., Shackleton, N. J., Astronomic timescale for the Pliocene Atlantic δ(18)O and dust flux records from Ocean Drilling Program Site 659, Paleoceanography, 1994, 9: 619–638.

    Article  Google Scholar 

  11. Savin, S. M., Douglas, R. G., Keller, G. et al., Miocene benthic foraminiferal isotope records: A synthesis, Marine Micropaleontology, 1981, 6: 423–450.

    Article  Google Scholar 

  12. Woodruff, F., Savin, S. M., Mid-Miocene isotope stratigraphy in the deep sea: High-resolution correlations, paleoclimatic cycles, and sediment preservation, Paleoceanography, 1991, 6(6): 755–806.

    Article  Google Scholar 

  13. Hodell, D. A., Vayavananda, A., Middle Miocene paleoceanography of the western equatorial Pacific (DSDP site 289) and the evolution of Globorotalia (Fohsella), Marine Micropaleontology, 1993, 22: 279–310.

    Article  Google Scholar 

  14. Kennett, J. P., Miocene to early Pliocene oxygen and carbon stratigraphy of the Southwest Pacific, DSDP Leg 90, Init. Repts DSDP 90,pt.2, 1986, 1383–1411.

    Google Scholar 

  15. Flower, B. P., Kennett, J. P., Middle Miocene ocean-climate transition: High-resolution oxygen and carbon isotopic records from Deep Sea Drilling Project Site 588A, Southwest Pacific, Paleoceanography, 1993, 8(6): 811–843.

    Article  Google Scholar 

  16. Woodruff, F., Savin, S. M., Abel, L., Miocene benthic foraminifer oxygen and carbon isotopes, Site 709, Indian Ocean. Proc. ODP, Sci. Res., 1990, 115: 519–528.

    Google Scholar 

  17. Miller, K. G., Wright, J. D., Fairbanks, R. G., Unlocking the ice house: Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion, Journal of Geophysical Research, 1991, 96(B4): 6829–6848.

    Article  Google Scholar 

  18. Wright, J. D., Miller, K. G., Fairbanks, R. G., Early and middle Miocene stable isotopes: Implications for deepwater circulation and climate, Paleoceanography, 1992, 7(3): 357–389.

    Article  Google Scholar 

  19. Zachos, J. S., Pagani, M., Sloan, L. et al., Trends, rhythms, and aberrations in global climate 65 Ma to present, Science, 2001A, 292: 686–693.

    Article  Google Scholar 

  20. Flower, B. P., Kennett, J. P., Middle Miocene paleoceanography in the Southwest Pacific: Relations with East Antarctic Ice Sheet development, Paleoceanography, 1995, 10(6): 1095–1112.

    Article  Google Scholar 

  21. Mutti, M., Bulk δ18O and δ13C records from Site 999, Colombia Basin, and Site 1000, Nicaraguan Rise (late Oligocene to middle Miocene): Diagenesis, Link to sediment parameters, and paleoceanography, Proc. ODP, Sci. Res., 2000, 165: 275–283.

    Google Scholar 

  22. Billups, K., Channell, J. E. T., Zachos, J., Late Oligocene to early Miocene geochronology and paleoceanography from the subantarctic South Atlantic, Paleoceanography, 2002, 17(1): 4–1-4–10.

    Google Scholar 

  23. Jian, Z., Cheng, X., Zhao, Q. et al., Oxygen isotope stratigraphy and events in the northern South China Sea during the last 6 million years, Science in China, Ser. D, 2001, 44(10): 952–960.

    Article  Google Scholar 

  24. Jian, Z., Zhao, Q., Cheng, X. et al., Pliocene-Pleistocene stable isotope and paleoceanographic changes in the northern South China Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, in press.

  25. Kennett, J. P., Hodell, D. A., Evidence for relative climatic stability of Antarctica during the Early Pliocene: a marine perspective, Geografiska Annuler, 1993, 75A(4): 205–220.

    Article  Google Scholar 

  26. Hodell, D. A., Woodruff, F., Variations in the strontium isotopic ratio of seawater during the Miocene: Stratigraphic and geochemical implications, Paleoceanography, 1994, 9(3): 405–426.

    Article  Google Scholar 

  27. Flower, B. P., Zachos, J. C., Paul, H., Milankovitch-scale climate variability recorded near the Oligocen/Miocene boundary, Proc.ODP, Sci Res., 1997, 154: 433–439.

    Google Scholar 

  28. Vincent, E., Berger, W. H., Carbon dioxide and polar cooling in the Miocene: the Monterey hypothesis, Geophys. Monogr., 1985, 32: 455–468.

    Google Scholar 

  29. Roth, J. M., Droxler, A. W., Kameo, K., The Caribbean carbonate crash at the middle to late Miocene transition: Linkage to the establishment of the modern global ocean conveyor, Proc. ODP, Sci.Res., 2000, 165: 249–273.

    Google Scholar 

  30. Berger, W. H., Jansen, E., Mid-Pleistocene climate shift—The Nansen connection, Geophysical Monograph, 1994, 84: 295–311.

    Google Scholar 

  31. Raymo, M. E., Oppo, D. W., Curry, W., The mid-Pleistocene climate transition: A deep sea carbon isotopic perspective, Paleoceanography, 1997, 12(4): 546–559.

    Article  Google Scholar 

  32. Mudelsee, M., Stattegger, K., Exploring the structure of the mid-Pleistocene revolution with advanced methods of time-series analysis, Geol Rundsch., 1997, 86: 499–511.

    Article  Google Scholar 

  33. Schmieder, F., von Dobeneck, T., Bleil, U., The Mid-Pleistocene climate transition as documented in the deep South Atlantic Ocean: initiation, interimstate and terminal event, Earth and Planetary Science Letters, 2000, 179: 539–549.

    Article  Google Scholar 

  34. Rutherford, S., D’Hondt, S., Early onset and tropical forcing of 100,000-year Pleistocene glacial cycles, Nature, 2000, 408: 72–75.

    Article  Google Scholar 

  35. Clemens, S., Tiedemann, R., Eccentricity forcing of Pliocene-Early Pleistocene climate revealed in a marine oxygen-isotope record, Nature, 1997, 385: 801–804.

    Article  Google Scholar 

  36. Paul, H. A., Zachos, J. C., Flower, B. P. et al., Orbitally induced climate and geochemical variability across the Oligocene/Miocene boundary, Paleoceanography, 2000, 15(5): 471–485.

    Article  Google Scholar 

  37. Zachos, J. S., Shackleton, N. J., Revenaugh, J. S. et al., Flower BP. Climate response to orbital forcing across the Oligocene-Miocene boundary, Science, 2001, 292: 274–278.

    Article  Google Scholar 

  38. Turco, E., Hilgen, F. J., Lourens, L. J. et al., Punctuated evolution of global cooling during the late Middle to early Late Miocene: High-resolution planktonic foraminiferal and oxygen isotope records from the Mediterranean, Paleoceanography, 2001, 16(4): 405–423.

    Article  Google Scholar 

  39. Van Couvering, J. A., Castradori, D., Cita, M. B. et al., The base of the Zanclean Stage and of the Pliocene Series, Episodes, 2000, 23(3): 179–187.

    Google Scholar 

  40. Ruddiman, W. F., Earth’s Climate: Past and Future, New York: Freeman W H & Co, 2001, 465.

    Google Scholar 

  41. Short, D. A., Mengel, J. G., Crowley, T. J. et al., North GR. Filtering of Milankovitch cycles by Earth’s geography, Quaternary Research, 1991, 35: 157–173.

    Article  Google Scholar 

  42. Olsen, P. E., Kent, D. V., Milankovitch climate forcing in the tropics of Pangaea during the Late Triassic, Palaeo Palaleo Palaeo, 1996, 122: 1–26.

    Article  Google Scholar 

  43. Matthews, R. K., Frohlich, C., Maximum flooding surfaces and sequence boundaries: Comparisons between observations and orbital forcing in the Cretaceaous and Jurassic (65–190 Ma), GeoArabia, Middle East Petroleum Geoscientists, 2002, 7: 503–538.

    Google Scholar 

  44. Imbrie, J., Berger, A., Boyle, E. A. et al., On the structure and origin of major glaciation cycles, 2, the 100,000-year cycle, Paleoceanography, 1993, 8: 699–735.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Wang, P., Zhao, Q., Jian, Z. et al. Thirty million year deep sea records in the South China Sea. Chin.Sci.Bull. 48, 2524–2535 (2003). https://doi.org/10.1007/BF03037016

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03037016

Keywords

Navigation