Skip to main content
Log in

The IOD-ENSO precursory teleconnection over the tropical Indo-Pacific Ocean: dynamics and long-term trends under global warming

  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

The dynamics of the teleconnection between the Indian Ocean Dipole (IOD) in the tropical Indian Ocean and El Niño-Southern Oscillation (ENSO) in the tropical Pacific Ocean at the time lag of one year are investigated using lag correlations between the oceanic anomalies in the southeastern tropical Indian Ocean in fall and those in the tropical Indo-Pacific Ocean in the following winter-fall seasons in the observations and in high-resolution global ocean model simulations. The lag correlations suggest that the IOD-forced interannual transport anomalies of the Indonesian Throughflow generate thermocline anomalies in the western equatorial Pacific Ocean, which propagate to the east to induce ocean-atmosphere coupled evolution leading to ENSO. In comparison, lag correlations between the surface zonal wind anomalies over the western equatorial Pacific in fall and the Indo-Pacific oceanic anomalies at time lags longer than a season are all insignificant, suggesting the short memory of the atmospheric bridge. A linear continuously stratified model is used to investigate the dynamics of the oceanic connection between the tropical Indian and Pacific Oceans. The experiments suggest that interannual equatorial Kelvin waves from the Indian Ocean propagate into the equatorial Pacific Ocean through the Makassar Strait and the eastern Indonesian seas with a penetration rate of about 10%–15% depending on the baroclinic modes. The IOD-ENSO teleconnection is found to get stronger in the past century or so. Diagnoses of the CMIP5 model simulations suggest that the increased teleconnection is associated with decreased Indonesian Throughflow transports in the recent century, which is found sensitive to the global warming forcing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander M A, Bladé I, Newman M, Lanzante J R, Lau N C, Scot J D. 2002. The atmospheric bridge: the influence of ENSO teleconnections on air-sea interaction over the global oceans. J. Climate, 15 (16): 2205–2231.

    Article  Google Scholar 

  • Annamalai H, Xie S P, McCreary J P, Murtugudde R. 2005. Impact of Indian Ocean sea surface temperature on developing El Niño. J. Climate, 18 (2): 302–319.

    Article  Google Scholar 

  • Behera S K, Luo J J, Masson S, Rao S A, Sakuma H, Yamagata T. 2006. A CGCM study on the interaction between IOD and ENSO. J. Climate, 19 (9): 1688–1705.

    Article  Google Scholar 

  • Behera S K, Yamagata T. 2003. Influence of the Indian Ocean dipole on the southern oscillation. J. Meteor. Soc. Jpn., 81 (1): 169–177.

    Article  Google Scholar 

  • Bleck R. 2002. An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Modell., 4 (1): 55–88.

    Article  Google Scholar 

  • Clarke A J, Gorder S V. 2003. Improving El Niño prediction using a space-time integration of Indo-Pacific winds and equatorial Pacific upper ocean heat content. Geophys. Res. Lett., 30 (7): 1399, https://doi.org/10.1029/2002GL016673.

    Article  Google Scholar 

  • Drushka K, Sprintall J, Gille S T, Brodjonegoro I. 2010. Vertical structure of kelvin waves in the Indonesian throughflow exit passages. J. Phys. Oceanogr., 40 (9): 1965–1987.

    Article  Google Scholar 

  • Halliwell G, Bleck R, Chassignet E. 1998. Atlantic Ocean simulations performed using a new hybrid-coordinate ocean model. In EOS Transactions, American Geophysical Union (AGU), Fall 1998 Meeting, San Francisco, CA.

    Google Scholar 

  • Izumo T, Lengaigne M, Vialard J, Luo J J, Yamagata T, Madec G. 2014. Influence of Indian Ocean dipole and pacific recharge on following year’s El Niño: interdecadal robustness. Climate Dyn., 42 (1-2): 291–310.

    Article  Google Scholar 

  • Izumo T, Vialard J, Lengaigne M, de Boyer Montegut C, Behera S K, Luo J J, Cravatte S, Masson S, Yamagata T. 2010. Influence of the state of the Indian Ocean Dipole on the following year’s El Niño. Nat. Geosci., 3 (3): 168–172.

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K C, Ropelewski C, Wang J. 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteor. Soc., 77 (3): 437–471.

    Article  Google Scholar 

  • Kaplan A, Cane M A, Kushnir Y, Clement A C, Blumenthal M B, Rajagopalan B. 1998. Analyses of global sea surface temperature 1856-1991. J. Geophy. Res., 103 (C9): 18567–18589.

    Article  Google Scholar 

  • Klein S A, Soden B J, Lau N C. 1999. Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J. Climate, 12 (4): 917–932.

    Article  Google Scholar 

  • Kug J S, Li T, An S I, Kang I S, Luo J J, Masson S, Yamagata T. 2006. Role of the ENSO-Indian Ocean coupling on ENSO variability in a coupled GCM. Geophys. Res. Lett., 33 (9): L09710, https://doi.org/10.1029/2005GL024916.

    Article  Google Scholar 

  • Lau N C, Leetmaa A, Nath M J, Wang H L. 2005. Influences of ENSO-induced Indo-western Pacific SST anomalies on extratropical atmospheric variability during the boreal summer. J. Climate, 18 (15): 2922–2942.

    Article  Google Scholar 

  • Lau N C, Nath M J. 2003. Atmosphere-ocean variations in the Indo-Pacific sector during ENSO episodes. J. Climate, 16 (1): 3–20.

    Article  Google Scholar 

  • Luo J J, Zhang R C, Behera S K, Masumoto Y, Jin F F, Lukas R, Yamagata T. 2010. Interaction between El Niño and Extreme Indian Ocean Dipole. J. Climate, 23 (3): 726–742.

    Article  Google Scholar 

  • Masumoto Y, Sasaki H, Kagimoto T, Komori N, Ishida A, Sasai Y, Miyama T, Motoi T, Mitsudera H, Takahashi K, Sakuma H, Yamagata T. 2004. A fifty-year eddy-resolving simulation of the world ocean—preliminary outcomes of OFES (OGCM for the Earth Simulator). J. Earth Simulator, 1: 35–56.

    Google Scholar 

  • McCreary Jr J P. 1984. Equatorial beams. J. Mar. Res., 42 (2): 395–430.

    Article  Google Scholar 

  • Meehl G A, Bony S. 2011. Introduction to CMIP5. Clivar Exchanges, 16 (2): 4–5.

    Google Scholar 

  • Molcard R, Fieux M, Syamsudin F. 2001. The throughflow within Ombai Strait. Deep Sea Res. Part I Oceanogr. Res. Papers, 48 (5): 1237–1253.

    Article  Google Scholar 

  • Moore D W, McCreary J P. 1990. Excitation of intermediatefrequency equatorial waves at a western ocean boundary: with application to observations from the Indian Ocean. J. Geophys. Res., 95 (C4): 5219–5231.

    Article  Google Scholar 

  • Pujiana K, Gordon A L, Sprintall J, Susanto R D. 2009. Intraseasonal variability in the Makassar strait thermocline. J. Mar. Res., 67 (6): 757–777.

    Article  Google Scholar 

  • Rayner N A, Parker D E, Horton E B, Folland C K, Alexander L V, Rowell D P, Kent E C, Kaplan A. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108 (D14): 4407, https://doi.org/10.1029/2002JD002670.

    Article  Google Scholar 

  • Saji N H, Goswami B N, Vinayachandran P N, Yamagata T. 1999. A dipole mode in the tropical Indian Ocean. Nature, 401 (6751): 360–363.

    Google Scholar 

  • Slutz R J, Lubker S J, Hiscox J D, WoodruffS D, Jenne R L, Joseph D H, Steurer P M, Elms J D. 1985. Comprehensive Ocean-Atmosphere Data Set: Release 1. NOAA Environmental Research Laboratories, Climate Research Program, Boulder, Colorado. 268p.

    Google Scholar 

  • Smith T M, Reynolds R W, Peterson T C, Lawrimore J. 2008. Improvements to NOAA’s historical merged Land-Ocean surface temperature analysis (1880-2006). J. Climate, 21 (10): 2283–2296.

    Article  Google Scholar 

  • Susanto R D, Ffield A, Gordon A L, Adi T R. 2012. Variability of Indonesian throughflow within Makassar Strait, 2004-2009. J. Geophys. Res., 117 (C9): C09013, https://doi. org/10.1029/2012JC008096.

    Article  Google Scholar 

  • Trenary L L, Han W Q. 2012. Intraseasonal-to-interannual variability of South Indian Ocean sea level and thermocline: remote versus local forcing. J. Phys. Oceanogr., 42 (4): 602–627.

    Article  Google Scholar 

  • Trenary L L, Han W Q. 2013. Local and remote forcing of decadal sea level and thermocline depth variability in the south Indian Ocean. J. Geophys. Res., 118 (1): 381–398, https://doi.org/10.1029/2012JC008317.

    Article  Google Scholar 

  • White W B. 1995. Design of a global observing system for gyre-scale upper ocean temperature variability. Prog. Oceanogr., 36 (3): 169–217.

    Article  Google Scholar 

  • Wu G X, Meng W. 1998. Gearing between the Indo-monsoon Circulation and the Pacific-Walker Circulation and the ENSO Part I: data analyses. Sci. Atmos. Sinica, 22 (4): 470–480. (in Chinese with English abstract)

    Google Scholar 

  • Wu R G, Kirtman B P. 2004. Understanding the impacts of the Indian Ocean on ENSO variability in a coupled GCM. J. Climate, 17 (20): 4019–4031.

    Article  Google Scholar 

  • Xu T F, Yuan D L, Yu Y Q, Zhao X. 2013. An assessment of Indo-Pacific oceanic channel dynamics in the FGOALS-g2 coupled climate system model. Adv. Atmos. Sci., 30 (4): 997–1016, https://doi.org/10.1007/s00376-013-2131-2.

    Article  Google Scholar 

  • Xu T F, Yuan D L. 2015. Why does the IOD-ENSO teleconnection disappear in some decades? Chin. J. Oceanol. Limnol., 33 (2): 534–544, https://doi.org/10.1007/s00343-015-4044-7.

    Article  Google Scholar 

  • Yuan D L, Han W Q. 2006. Roles of equatorial waves and western boundary reflection in the seasonal circulation of the equatorial Indian Ocean. J. Phys. Oceanogr., 36 (5): 930–944.

    Article  Google Scholar 

  • Yuan D L, Wang J, Xu T F, Xu P, Hui Z, Zhao X, Luan Y H, Zheng W P, Yu Y Q. 2011. Forcing of the Indian Ocean dipole on the interannual variations of the tropical Pacific Ocean: roles of the Indonesian throughflow. J. Climate, 24 (14): 3593–3608.

    Article  Google Scholar 

  • Yuan D L, Xu P, Xu T F. 2017. Climate variability and predictability associated with the Indo-Pacific Oceanic channel dynamics in the CCSM4 coupled system model. Chin. J. Oceanol. Limnol., 35 (1): 23–28, https://doi.org/10.1007/s00343-016-5178-y.

    Article  Google Scholar 

  • Yuan D L, Zhou H, Zhao X. 2013. Interannual climate variability over the tropical Pacific Ocean induced by the Indian Ocean dipole through the Indonesian throughflow. J. Climate, 26 (9): 2845–2861.

    Article  Google Scholar 

  • Zhou Q, Duan W S, Mu M, Feng R. 2015. Influence of positive and negative Indian Ocean Dipoles on ENSO via the Indonesian Throughflow: results from sensitivity experiment. Adv. Atmos. Sci., 32 (6): 783–793.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongliang Yuan  (袁东亮).

Additional information

Supported by the National Basic Research Program of China (973 Program) (No. 2012CB956001), the CMA (No. GYHY201306018), the State Oceanic Administration (SOA) (No. GASI-03-01-01-05), the National Natural Science Foundation of China (NSFC) (Nos. 41421005, 41176019, U1406401), the Shandong Provincial Project (No. 2014GJJS0101), the Strategic Priority Project of CAS (Nos. XDA11010301, XDA11010102, XDA11010205), and the QNLM Project (No. 2016ASKJ04)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, D., Hu, X., Xu, P. et al. The IOD-ENSO precursory teleconnection over the tropical Indo-Pacific Ocean: dynamics and long-term trends under global warming. J. Ocean. Limnol. 36, 4–19 (2018). https://doi.org/10.1007/s00343-018-6252-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-018-6252-4

Keywords

Navigation