Skip to main content
Log in

Comprehensive analysis of cellulose content, crystallinity, and lateral packing in Gossypium hirsutum and Gossypium barbadense cotton fibers using sum frequency generation, infrared and Raman spectroscopy, and X-ray diffraction

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The mesoscale packing and crystal structure of cellulose microfibrils as well as temporal changes in cell wall composition and hydration during the development of cotton fibers from two species, Gossypium hirsutum and G. barbadense were studied using vibrational sum frequency generation (SFG), attenuated total refection infrared (ATR-IR), Fourier transform Raman (FT-Raman) spectroscopy and X-ray diffraction (XRD). The developmental stages analyzed (13–60 days post anthesis) included primary wall synthesis, transitional cell wall remodeling, secondary wall thickening via synthesis of nearly pure cellulose, and fiber maturation. ATR-IR and FT-Raman combined with principle component analysis revealed that fibers of both species undergo abrupt changes in the cellulose and matrix polymer contents during the transition to secondary cell wall synthesis. XRD revealed that cellulose crystal size and crystallinity increase similarly over time in both species. SFG analysis of fibers from un-opened bolls, which were stored in water then air dried, showed subtle differences between two species in the mesoscale ordering of cellulose microfibrils in the maturing secondary walls. In the samples of mature fibers dried on the plant after the boll split opened naturally, the difference in SFG spectra between species was negligible. Collectively, the results show that (a) SFG can uniquely reveal differences in cellulose fibril ordering in maturing cotton fibers before boll opening; and (b) illustrate the comparative usefulness of other commonly used spectroscopic analytical methods for cotton fiber analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abidi N, Cabrales L, Haigler CH (2014) Changes in the cell wall and cellulose content of developing cotton fibers investigated by FTIR spectroscopy. Carbohydr Polym 100:9–16. doi:10.1016/j.carbpol.2013.01.074

    Article  CAS  Google Scholar 

  • Agarwal U, Reiner R, Ralph S (2010) Cellulose I crystallinity determination using FT-Raman spectroscopy: univariate and multivariate methods. Cellulose 17:721–733. doi:10.1007/s10570-010-9420-z

    Article  CAS  Google Scholar 

  • Arthur J (1990) Cotton. In: Kroschwitz JI (ed) Polymers: fibers and textiles, a compendium. Wiley, New York

    Google Scholar 

  • Asay DB, Kim SH (2005) Evolution of the adsorbed water layer structure on silicon oxide at room temperature. J Phys Chem B 109:16760–16763. doi:10.1021/Jp053042o

    Article  CAS  Google Scholar 

  • Avci U, Pattathil S, Singh B, Brown VL, Hahn MG, Haigler CH (2013) Cotton fiber cell walls of Gossypium hirsutum and Gossypium barbadense have differences related to loosely-bound xyloglucan. PLoS One 8:e56315. doi:10.1371/journal.pone.0056315

    Article  CAS  Google Scholar 

  • Bahaji A, Li J, Ovecka M, Ezquer I, Muñoz FJ, Baroja-Fernández E, Romero JM, Almagro G, Montero M, Hidalgo M (2011) Arabidopsis thaliana mutants lacking ADP-glucose pyrophosphorylase accumulate starch and wild-type ADP-glucose content: further evidence for the occurrence of important sources, other than ADP-glucose pyrophosphorylase, of ADP-glucose linked to leaf starch biosynthesis. Plant Cell Physiol 52:1162–1176. doi:10.1093/Pcp/Pcr067

    Article  CAS  Google Scholar 

  • Barnette AL, Bradley LC, Veres BD, Schreiner EP, Park YB, Park J, Park S, Kim SH (2011) Selective detection of crystalline cellulose in plant cell walls with sum-frequency-generation (SFG) vibration spectroscopy. Biomacromolecules 12:2434–2439. doi:10.1021/bm200518n

    Article  CAS  Google Scholar 

  • Barnette AL, Lee C, Bradley LC, Schreiner EP, Park YB, Shin H, Cosgrove DJ, Park S, Kim SH (2012) Quantification of crystalline cellulose in lignocellulosic biomass using sum frequency generation (SFG) vibration spectroscopy and comparison with other analytical methods. Carbohydr Polym 89:802–809. doi:10.1016/j.carbpol.2012.04.014

    Article  CAS  Google Scholar 

  • Betancur L, Singh B, Rapp RA, Wendel JF, Marks MD, Roberts AW, Haigler CH (2010) Phylogenetically distinct cellulose synthase genes support secondary wall thickening in arabidopsis shoot trichomes and cotton fiber. J Integr Plant Biol 52:205–220. doi:10.1111/j.1744-7909.2010.00934.x

    Article  CAS  Google Scholar 

  • Bhatawdekar SP, Sreenivasan S, Balasubramanya R, Sundaram V (1992) Enhanced enzymolysis of never-dried cotton fibers belonging to different species. J Appl Polym Sci 44:243–248

    Article  CAS  Google Scholar 

  • Ding S-Y, Liu Y-S, Zeng Y, Himmel ME, Baker JO, Bayer EA (2012) How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science 338:1055–1060. doi:10.1126/science.1227491

    Article  CAS  Google Scholar 

  • Fry SC (1988) The growing plant cell wall: chemical and metabolic analysis. Longman Group Limited, Edinburg

    Google Scholar 

  • Greene PR, Bain CD (2005) Total internal reflection Raman spectroscopy of barley leaf epicuticular waxes in vivo. Colloids Surf B 45:174–180. doi:10.1016/j.colsurfb.2005.08.010

    Article  CAS  Google Scholar 

  • Haigler CH (2007) Substrate supply for cellulose synthesis and its stress sensitivity in the cotton fiber. Cellulose: molecular and structural biology. Springer, Berlin, pp 147–168

    Chapter  Google Scholar 

  • Haigler CH, Betancur L, Stiff MR, Tuttle JR (2012) Cotton fiber: a powerful single-cell model for cell wall and cellulose research. Front Plant Sci 3:104. doi:10.3389/fpls.2012.00104

    Article  CAS  Google Scholar 

  • Hartzell-Lawson MM, Hsieh Y-L (2000) Characterizing the noncellulosics in developing cotton fibers. Text Res J 70:810–819. doi:10.1177/004051750007000909

    Article  CAS  Google Scholar 

  • Heyn ANJ (1966) The microcrystalline structure of cellulose in cell walls of cotton, ramie, and jute fibers as revealed by negative staining of sections. J Cell Biol 29:181–197. doi:10.1083/jcb.29.2.181

    Article  CAS  Google Scholar 

  • Hieu HC, Tuan NA, Li H, Miyauchi Y, Mizutani G (2011) Sum frequency generation microscopy study of cellulose fibers. Appl Spectrosc 65:1254–1259. doi:10.1366/11-06388

    Article  CAS  Google Scholar 

  • Hsieh Y-L, Hu X-P, Wang A (1999) Structural development of cotton fibers and linkages to fiber quality. In: Basra AS (ed) Cotton fibers-developmental biology, quality improvement, and textile processing. Haworth Press

    Google Scholar 

  • Hsieh Y-L, Hu X-P, Wang A (2000) Single fiber strength variations of developing cotton fibers—strength and structure of G. hirsutum and G. barbedense. Text Res J 70:682–690. doi:10.1177/004051750007000805

    Article  CAS  Google Scholar 

  • Hu XP, Hsieh YL (1996) Crystalline structure of developing cotton fibers. J Polym Sci Part B Polym Phys 34:1451–1459. doi:10.1002/(Sici)1099-0488(199606)34:8<1451:Aid-Polb8>3.0.Co;2-V

    Article  CAS  Google Scholar 

  • Ingram P, Woods D, Peterlin A, Williams J (1974) Never-dried cotton fibers part I: morphology and transport properties. Text Res J 44:96–106. doi:10.1177/004051757404400203

    Article  Google Scholar 

  • Kafle K, Shi R, Lee C, Mittal A, Park Y, Sun Y-H, Park S, Chiang V, Kim S (2014a) Vibrational sum-frequency-generation (SFG) spectroscopy study of the structural assembly of cellulose microfibrils in reaction woods. Cellulose. doi:10.1007/s10570-014-0322-3

    Google Scholar 

  • Kafle K, Xi X, Lee CM, Tittmann BR, Cosgrove DJ, Park YB, Kim SH (2014b) Cellulose microfibril orientation in onion (Allium cepa L.) epidermis studied by atomic force microscopy (AFM) and vibrational sum frequency generation (SFG) spectroscopy. Cellulose 21:1075–1086. doi:10.1007/s10570-013-0121-2

    Article  Google Scholar 

  • Kim HJ, Triplett BA (2001) Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol 127:1361–1366. doi:10.1104/pp.010724

    Article  CAS  Google Scholar 

  • Kljun A, Benians TA, Goubet F, Meulewaeter F, Knox JP, Blackburn RS (2011) Comparative analysis of crystallinity changes in cellulose I polymers using ATR-FTIR, X-ray diffraction, and carbohydrate-binding module probes. Biomacromolecules 12:4121–4126. doi:10.1021/Bm201176m

    Article  CAS  Google Scholar 

  • Kljun A, El-Dessouky HM, Benians TA, Goubet F, Meulewaeter F, Knox JP, Blackburn RS (2014) Analysis of the physical properties of developing cotton fibres. Eur Polym J 51:57–68. doi:10.1016/j.eurpolymj.2013.11.016

    Article  CAS  Google Scholar 

  • Kohel R (2000) Cotton germplasm resources and the potential for improved fiber productivity and quality. In: Basra AS (ed) Cotton fibers—developmental biology, quality improvement, and textile processing. Haworth Press, New York

    Google Scholar 

  • Kokot S, Czarnik-Matusewicz B, Ozaki Y (2002) Two-dimensional correlation spectroscopy and principal component analysis studies of temperature-dependent IR spectra of cotton–cellulose. Biopolymers 67:456–469. doi:10.1002/bip.10163

    Article  CAS  Google Scholar 

  • Kong L, Lee C, Kim SH, Ziegler GR (2014) Characterization of starch polymorphic structures using vibrational sum frequency generation spectroscopy. J Phys Chem B 118:1775–1783. doi:10.1021/Jp411130n

    Article  CAS  Google Scholar 

  • Lee CM, Mohamed NMA, Watts HD, Kubicki JD, Kim SH (2013) Sum-frequency-generation vibration spectroscopy and density functional theory calculations with dispersion corrections (DFT-D2) for cellulose Iα and Iβ. J Phys Chem B 117:6681–6692. doi:10.1021/jp402998s

    Article  CAS  Google Scholar 

  • Lee CM, Kafle K, Park YB, Kim SH (2014) Probing crystal structure and mesoscale assembly of cellulose microfibrils in plant cell walls, tunicate tests, and bacterial films using vibrational sum frequency generation (SFG) spectroscopy. Phys Chem Chem Phys 16:10844–10853. doi:10.1039/C4cp00515e

    Article  CAS  Google Scholar 

  • Lei L, Zhang T, Strasser R, Lee C, Gonneau M, Mach L, Vernhettes S, Kim SH, Cosgrove D, Li S, Gu Y (2014) The jiaoyao1 mutant is an allel of korrigan1 that abolishes endoglucanase activity and affects the organization of both cellulose microfibrils and microtubules in Arabidopsis. Plant Cell 26:2601–2616. doi:10.1105/tpc.114.126193

    Article  CAS  Google Scholar 

  • Liu Y, Gamble G, Thibodeaux D (2010) Two-dimensional attenuated total reflection infrared correlation spectroscopy study of the desorption process of water-soaked cotton fibers. Appl Spectrosc 64:1355–1363. doi:10.1366/000370210793561556

    Article  CAS  Google Scholar 

  • Liu Q, Talbot M, Llewellyn DJ (2013) Pectin methylesterase and pectin remodelling differ in the fibre walls of two gossypium species with very different fibre properties. PLoS One 8:e65131. doi:10.1371/journal.pone.0065131

    Article  CAS  Google Scholar 

  • Long RL, Bange MP, Delhom CD, Church JS, Constable GA (2013) An assessment of alternative cotton fibre quality attributes and their relationship with yarn strength. Crop Sci 64:750–762. doi:10.1071/Cp12382

    Google Scholar 

  • Meinert MC, Delmer DP (1977) Changes in biochemical composition of the cell wall of the cotton fiber during development. Plant Physiol 59:1088–1097. doi:10.1104/pp.59.6.1088

    Article  CAS  Google Scholar 

  • Nelson ML, Mares T (1965) Accessibility and lateral order distribution of the cellulose in the developing cotton fiber1. Text Res J 35:592–603. doi:10.1177/004051756503500703

    Article  Google Scholar 

  • Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10. doi:10.1186/1754-6834-310

    Article  Google Scholar 

  • Park YB, Lee CM, Zhang T, Koo B-W, Park S, Cosgrove DJ, Kim SH (2013) Monitoring large-scale ordering of cellulose in intact plant cell walls using sum frequency generation (SFG) spectroscopy. Plant Physiol 163:907–913. doi:10.1104/pp.113.225235

    Article  CAS  Google Scholar 

  • Patterson A (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978. doi:10.1103/PhysRev.56.978

    Article  CAS  Google Scholar 

  • Peeters M-C, De Langhe E (1986) Cellulose packing density in the secondary wall of never dried cotton fibers. Text Res J 56:755–758. doi:10.1177/004051758605601207

    Article  CAS  Google Scholar 

  • Rämänen P, Penttilä PA, Svedström K, Maunu SL, Serimaa R (2012) The effect of drying method on the properties and nanoscale structure of cellulose whiskers. Cellulose 19:901–912. doi:10.1007/s10570-012-9695-3

    Article  Google Scholar 

  • Rebenfield I (1990) Fibers. In: Kroschwitz JI (ed) Polymers: fibers and textiles, a compendium. Wiley, New York

    Google Scholar 

  • Rodgers J, Delhom C, Fortier C, Thibodeaux D (2011) Rapid measurement of cotton fiber maturity and fineness by image analysis-microscopy using the Cottonscope®. Text Res J. doi:10.1177/0040517511431317

    Google Scholar 

  • Seagull R (1992) A quantitative electron microscopic study of changes in microtubule arrays and wall microfibril orientation during in vitro cotton fiber development. J Cell Sci 101:561–577

    Google Scholar 

  • Singh B, Avci U, Inwood SEE, Grimson MJ, Landgraf J, Mohnen D, Sørensen I, Wilkerson CG, Willats WG, Haigler CH (2009) A specialized outer layer of the primary cell wall joins elongating cotton fibers into tissue-like bundles. Plant Physiol 150:684–699. doi:10.1104/pp.109.135459

    Article  CAS  Google Scholar 

  • Sugiyama J, Persson J, Chanzy H (1991) Combined infrared and electron diffraction study of the polymorphism of native celluloses. Macromolecules 24:2461–2466. doi:10.1021/Ma00009a050

    Article  CAS  Google Scholar 

  • Timpa JD, Triplett BA (1993) Analysis of cell-wall polymers during cotton fiber development. Planta 189:101–108. doi:10.1007/BF00201350

    Article  CAS  Google Scholar 

  • Updegraff DM (1969) Semimicro determination of cellulose inbiological materials. Anal Biochem 32:420–424. doi:10.1016/S0003-2697(69)80009-6

    Article  CAS  Google Scholar 

  • Wakelyn P, French A (2007) Cotton fiber chemistry and technology. CRC Press, Taylor and Francis Group, Boca Raton

    Google Scholar 

  • Wang T, Park YB, Caporini MA, Rosay M, Zhong L, Cosgrove DJ, Hong M (2013) Sensitivity-enhanced solid-state NMR detection of expansin’s target in plant cell walls. Proc Natl Acad Sci 110:16444–16449. doi:10.1073/pnas.1316290110

    Article  CAS  Google Scholar 

  • Wendel JF, Brubaker C, Alvarez I, Cronn R, Stewart J (2009) Evolution and natural history of the cotton genus. In: Paterson AH (ed) Genetics and genomics of cotton, plant genetics and genomics: crops and models 3. Springer, New York

    Google Scholar 

  • Wiley JH, Atalla RH (1987) Band assignments in the Raman spectra of celluloses. Carbohydr Res 160:113–129. doi:10.1016/0008-6215(87)80306-3

    Article  CAS  Google Scholar 

  • Willison J, Brown RM Jr (1977) An examination of the developing cotton fiber: wall and plasmalemma. Protoplasma 92:21–41. doi:10.1007/BF01280198

    Article  Google Scholar 

  • Zimmerley M, Younger R, Valenton T, Oertel DC, Ward JL, Potma EO (2010) Molecular orientation in dry and hydrated cellulose fibers: a coherent anti-stokes Raman scattering microscopy study. J Phys Chem B 114:10200–10208. doi:10.1021/jp103216j

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by The Center for Lignocellulose Structure and Formation, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences under Award Number DE-SC0001090.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Candace H. Haigler or Seong H. Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 412 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, C.M., Kafle, K., Belias, D.W. et al. Comprehensive analysis of cellulose content, crystallinity, and lateral packing in Gossypium hirsutum and Gossypium barbadense cotton fibers using sum frequency generation, infrared and Raman spectroscopy, and X-ray diffraction. Cellulose 22, 971–989 (2015). https://doi.org/10.1007/s10570-014-0535-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0535-5

Keywords

Navigation