Skip to main content
Log in

Development of cellulose nanowhisker-polyacrylamide copolymer as a highly functional precursor in the synthesis of nanometal particles for conductive textiles

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Herein we present extensive studies that were undertaken to develop a new copolymer with distinctive characteristics for utilization in different applications particularly in conductive textiles. The copolymer is based on graft polymerization of cellulose nanowhiskers (CNWs) with acrylamide and therefore nominated CNW-polyacrylamide (PAAm) copolymer. Development of this copolymer comprises preparation of CNWs from purified cotton sliver as per the acid hydrolysis method, followed by copolymerization of the freshly prepared CNWs with AAm at different feeding ratios for the sake of product optimization in the presence of K2S2O8 as initiator. Thus, obtained CNW-PAAm copolymers were characterized by making use of the proper instruments and analysis facilities. Following this, the newly prepared and promising copolymer was selected and used as a precursor in the green synthesis of silver and copper nanoparticles. The crystal nature of CNWs as cellulose I remains unaltered after copolymerization, but the crystallinity decreases. According to thermal gravimetric analysis, the copolymer is much more thermally stable than CNWs. The CNW-PAAm copolymer can be used successfully as a highly functional, effective and adequate precursor for green synthesis of silver and copper nanoparticles as shown by UV-Vis spectral analysis and transmission electron microscopy micrographs. A multi-branched shape and hyperbranched shape-like tree involving silver nanoparticles and the PAAm graft of the copolymer are formed. Furthermore, Cu nanoparticles are chosen as a candidate for conductive fabrics application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ahmad MB, Tay MY, Shameli K, Hussein MZ, Lim JJ (2011) Green synthesis and characterization of silver/chitosan/polyethylene glycol nanocomposites without any reducing agent. Int J Mol Sci 12(8). doi:10.3390/ijms12084872

  • Bitinis N, Verdejo R, Bras J, Fortunati E, Kenny JM, Torre L, López-Manchado MA (2013) Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites part I. Processing and morphology. Carbohydr Polym 96(2):611–620. doi:10.1016/j.carbpol.2013.02.068

    Article  CAS  Google Scholar 

  • Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94(1):154–169. doi:10.1016/j.carbpol.2013.01.033

    Article  CAS  Google Scholar 

  • Dang TMD, Le TTT, Fribourg-Blanc E, Dang MC (2011) Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method. Adv Nat Sci Nanosci Nanotechnol 2(1):015009

    Article  Google Scholar 

  • Drogat N, Granet R, Sol V, Memmi A, Saad N, Koerkamp CK, Bressollier P, Krausz P (2011) Antimicrobial silver nanoparticles generated on cellulose nanocrystals. J Nanopart Res 13(4):1557–1562. doi:10.1007/s11051-010-9995-1

    Article  CAS  Google Scholar 

  • El-Rafie MH, Shaheen TI, Mohamed AA, Hebeish A (2012) Bio-synthesis and applications of silver nanoparticles onto cotton fabrics. Carbohydr Polym 90(2):915–920. doi:10.1016/j.carbpol.2012.06.020

    Article  CAS  Google Scholar 

  • Filippo E, Serra A, Manno D (2009) Poly(vinyl alcohol) capped silver nanoparticles as localized surface plasmon resonance-based hydrogen peroxide sensor. Sens Actuators B Chem 138(2):625–630. doi:10.1016/j.snb.2009.02.056

    Article  CAS  Google Scholar 

  • Fortunati E, Armentano I, Zhou Q, Iannoni A, Saino E, Visai L, Berglund LA, Kenny JM (2012) Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydr Polym 87(2):1596–1605. doi:10.1016/j.carbpol.2011.09.066

    Article  CAS  Google Scholar 

  • Hasani M, Cranston ED, Westman G, Gray DG (2008) Cationic surface functionalization of cellulose nanocrystals. Soft Matter 4(11):2238–2244. doi:10.1039/b806789a

  • Hebeish A, Farag S, Sharaf S, Shaheen TI (2014) Thermal responsive hydrogels based on semi interpenetrating network of poly(NIPAm) and cellulose nanowhiskers. Carbohydr Polym 102:159–166. doi:10.1016/j.carbpol.2013.10.054

    Article  CAS  Google Scholar 

  • Hossain KZ, Ahmed I, Parsons A, Scotchford C, Walker G, Thielemans W, Rudd C (2012) Physicochemical and mechanical properties of nanocomposites prepared using cellulose nanowhiskers and poly(lactic acid). J Mater Sci 47(6):2675–2686. doi:10.1007/s10853-011-6093-4

    Article  CAS  Google Scholar 

  • Hussain JI, Kumar S, Hashmi AA, Khan Z (2011) Silver nanoparticles: preparation, characterization, and kinetics. Adv Mat Lett 2(3):188–194

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466. doi:10.1002/anie.201001273

    Article  CAS  Google Scholar 

  • Liu H, Wang D, Shang S, Song Z (2011) Synthesis and characterization of Ag–Pd alloy nanoparticles/carboxylated cellulose nanocrystals nanocomposites. Carbohydr Polym 83(1):38–43. doi:10.1016/j.carbpol.2010.07.019

    Article  CAS  Google Scholar 

  • Liu QM, Zhou DB, Yamamoto Y, Ichino R, Okido M (2012) Preparation of Cu nanoparticles with NaBH4 by aqueous reduction method. Trans Nonferrous Metals Soc China 22(1):117–123. doi:10.1016/S1003-6326(11)61149-7

    Article  CAS  Google Scholar 

  • Ljungberg N, Bonini C, Bortolussi F, Boisson C, Heux L, Cavaille JY (2005) New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics. Biomacromolecules 6(5):2732–2739

  • Mochochoko T, Oluwafemi OS, Jumbam DN, Songca SP (2013) Green synthesis of silver nanoparticles using cellulose extracted from an aquatic weed; water hyacinth. Carbohydr Polym 98(1):290–294. doi:10.1016/j.carbpol.2013.05.038

    Article  CAS  Google Scholar 

  • Pham LQ, Sohn JH, Kim CW, Park JH, Kang HS, Lee BC, Kang YS (2012) Copper nanoparticles incorporated with conducting polymer: effects of copper concentration and surfactants on the stability and conductivity. J Colloid Interface Sci 365(1):103–109. doi:10.1016/j.jcis.2011.09.041

    Article  CAS  Google Scholar 

  • Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G, Rahuman AA (2012) Synthesis and antimicrobial activity of copper nanoparticles. Mater Lett 71:114–116. doi:10.1016/j.matlet.2011.12.055

    Article  CAS  Google Scholar 

  • Raveendran P, Fu J, Wallen SL (2006) A simple and “green” method for the synthesis of Au, Ag, and Au–Ag alloy nanoparticles. Green Chem 8(1):34–38. doi:10.1039/b512540e

    Article  CAS  Google Scholar 

  • Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4(3):707–716. doi:10.1016/j.actbio.2007.11.006

    Article  CAS  Google Scholar 

  • Shin Y, Exarhos GJ (2007) Template synthesis of porous Titania using cellulose nanocrystals. Mater Lett 61(11–12):2594–2597. doi:10.1016/j.matlet.2006.10.005

    Article  CAS  Google Scholar 

  • Shin Y, Bae I-T, Arey BW, Exarhos GJ (2008) Facile stabilization of gold-silver alloy nanoparticles on cellulose nanocrystal. J Phys Chem C 112(13):4844–4848. doi:10.1021/jp710767w

    Article  CAS  Google Scholar 

  • Tankhiwale R, Bajpai SK (2009) Graft copolymerization onto cellulose-based filter paper and its further development as silver nanoparticles loaded antibacterial food-packaging material. Colloids Surf B 69(2):164–168. doi:10.1016/j.colsurfb.2008.11.004

    Article  CAS  Google Scholar 

  • Xue C-H, Chen J, Yin W, Jia S-T, Ma J-Z (2012) Superhydrophobic conductive textiles with antibacterial property by coating fibers with silver nanoparticles. Appl Surf Sci 258(7):2468–2472. doi:10.1016/j.apsusc.2011.10.074

    Article  CAS  Google Scholar 

  • Zhang Y, Peng H, Huang W, Zhou Y, Zhang X, Yan D (2008) Hyperbranched poly(amidoamine) as the stabilizer and reductant to prepare colloid silver nanoparticles in situ and their antibacterial activity. J Phys Chem C 112(7):2330–2336. doi:10.1021/jp075436g

    Article  CAS  Google Scholar 

  • Zhou Y, Ding EY, Li WD (2007) Synthesis of TiO2 nanocubes induced by cellulose nanocrystal (CNC) at low temperature. Mater Lett 61(28):5050–5052. doi:10.1016/j.matlet.2007.04.001

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Th. I. Shaheen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 333 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hebeish, A., Farag, S., Sharaf, S. et al. Development of cellulose nanowhisker-polyacrylamide copolymer as a highly functional precursor in the synthesis of nanometal particles for conductive textiles. Cellulose 21, 3055–3071 (2014). https://doi.org/10.1007/s10570-014-0317-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0317-0

Keywords

Navigation