Skip to main content

Advertisement

Log in

Trends in the production of cellulose nanofibers from non-wood sources

  • Review Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The rise of biomass-derived nanocellulose addresses the sustainability criteria now demanded of new materials, which have been widely overlooked in the plastics era—renewability, abundance, biodegradability, and recyclability. Cellulose nanofibers have conventionally been extracted from wood products, supported by an established forestry infrastructure, but the drive for biomass sustainability has encouraged researchers to explore non-wood sources over the past 15 years. Non-wood sources, including agricultural residues and industrial wastes, offer an attractive alternative due to their abundance, fast generation, and low starting value. Moreover, agricultural residues can improve the sustainability of cellulose nanofiber processing from multiple angles. The biochemical composition of the typical agricultural residue, which is lower in lignin and higher in hemicellulose than wood stems, improves the fibrillation efficiency of cellulose bundles into nano-scale fibers. In addition, agricultural residues yield high biomass volume from short growth cycles with improved land utilisation, whilst offsetting environmental issues associated with their current uses. In this work, we performed a comprehensive literature evaluation of the biomass sources used to produce cellulose nanofibers. Of the 3358 cellulose nanofiber publications from 2004 to 2018 with an identifiable source material, 57% were derived from wood-based biomass and 30% from non-wood biomass, with 100 unique biomass sources identified. Furthermore, the top research fields associated with non-wood publications included general characterisation (36%), plastic nanocomposites (19%), bionanocomposites (9%), biomedical products (8%), and electronic devices (6%). As social, political and economic drivers reinforce sustainability as a key focus in nanocellulose production, this bibliometric resource provides a timely snapshot of the sustainability trends in cellulose nanofiber research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Adapted from Pennells et al. (2018). Reproduced with permission from Elsevier

Fig. 4

Adapted from Tao et al. (2012). Reproduced with permission from Elsevier

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

Download references

Acknowlegemets

Funding was provided by Grains Research and Development Corporation (Grant No. 9176987).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darren J. Martin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 139 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pennells, J., Godwin, I.D., Amiralian, N. et al. Trends in the production of cellulose nanofibers from non-wood sources. Cellulose 27, 575–593 (2020). https://doi.org/10.1007/s10570-019-02828-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02828-9

Keywords

Navigation