Skip to main content
Log in

Rheological behavior of cellulose/silk fibroin blend solutions with ionic liquid as solvent

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The rheological behavior of cellulose and silk fibroin blend in 1-butyl-3-methylimidazolium chloride was studied. The data from the rheological results was analyzed to understand the microstructure of the blend solutions. The viscosity and dynamic modulus of the blend solution decreased with increasing ratio of silk fibroin. While comparing the experimental results with the calculated data from the log-additivity rule, it is revealed that zero-shear viscosity, dynamic modulus show positive–negative deviations and a typical continuous–discrete type of morphology could be imaged. At lower shear rate, the change of phase morphology took place at the ratio of about 0.5 volume fraction of cellulose. However, the blend solution showed positive deviations for all cellulose/silk fibroin blend ratios at high shear rate, which indicates that the dispersion of cellulose and silk fibroin was improved under shear stress. The properties of cellulose/silk fibroin blends observed by Fourier transform infrared spectroscopy and scanning electron microcopy agreed with the result from rheology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Cao H, Chen X, Huang L, Shao Z (2009) Electrospinning of reconstituted silk fiber from aqueous silk fibroin solution. Mater Sci Eng C-Bio S 29(7):2270–2274

    Article  Google Scholar 

  • Carreau P (1972) Rheological equations from molecular network theories. J Rheol 16(1):99–127

    Article  CAS  Google Scholar 

  • Chambon F, Winter HH (1987) Linear viscoelasticity at the gel point of a cross-linking pdms with imbalanced stoichiometry. J Rheol 31(8):683–697

    Article  CAS  Google Scholar 

  • Chen Y, Zhang LN (2004) Blend membranes prepared from cellulose and soy protein isolate in NaOH/thiourea aqueous solution. J Appl Polym Sci 94(2):748–757

    Article  CAS  Google Scholar 

  • Chen X, Zhang Y, Wang H, Wang S-W, Liang S, Colby RH (2011) Solution rheology of cellulose in 1-butyl-3-methyl imidazolium chloride. J Rheol 55(3):485–494

    Article  CAS  Google Scholar 

  • Colby RH, Boris DC, Krause WE, Dou S (2007) Shear thinning of unentangled flexible polymer liquids. Rheol Acta 46(5):569–575

    Article  CAS  Google Scholar 

  • Corsini P, Perez-Rigueiro J, Guinea GV, Plaza GR, Elices M, Marsano E, Carnasciali MM, Freddi G (2007) Influence of the draw ratio on the tensile and fracture behavior of NMMO regenerated silk fibers. J Polym Sci Polym Phys 45(18):2568–2579

    Article  CAS  Google Scholar 

  • Csihony S, Fischmeister C, Bruneau C, Horvath IT, Dixneuf PH (2002) First ring-opening metathesis polymerization in an ionic liquid. Efficient recycling of a catalyst generated from a cationic ruthenium allenylidene complex. New J Chem 26(11):1667–1670

    Article  CAS  Google Scholar 

  • Dekkers M, Hobbs S, Watkins VH (1991) Mology and deformation-behavior of toughened blends of poly(butylene terephthalate), polycarbonate and poly(phenylene ether). Polymer 32(12):2150–2154

    Article  CAS  Google Scholar 

  • Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26(9):1473–1524

    Article  CAS  Google Scholar 

  • Freddi G, Romano M, Massafra MR, Tsukada M (1995) Silk fibroin/cellulose blend films:preparation, structure, and physical-properties. J Appl Polym Sci 56(12):1537–1545

    Article  CAS  Google Scholar 

  • Gericke M, Schlufter K, Liebert T, Heinze T, Budtova T (2009) Rheological properties of cellulose/ionic liquid solutions: from dilute to concentrated states. Biomacromolecules 10(5):1188–1194

    Article  CAS  Google Scholar 

  • Haward SJ, Sharma V, Butts CP, McKinley GH, Rahatekar SS (2012) Shear and extensional rheology of cellulose/ionic liquid solutions. Biomacromolecules 13(5):1688–1699

    Article  CAS  Google Scholar 

  • Hirano S, Nakahira T, Zhang M, Nakagawa M, Yoshikawa M, Midorikawa T (2002) Wet-spun blend biofibers of cellulose-silk fibroin and cellulose-chitin-silk fibroin. Carbohydr Polym 47(2):121–124

    Article  CAS  Google Scholar 

  • Holbrey JD, Rogers RD (2002) Green industrial applications of ionic liquids: technology review. In: Rogers RD, Seddon KR (eds) Ionic liquids: industrial applications for green chemistry. ACS Symposium Series. 818:446–458

  • Iannaccone A, Amitrano S, Pantani R (2013) Rheological and mechanical behavior of ethyl vinyl acetate/low density polyethylene blends for injection molding. J Appl Polym Sci 127(2):1157–1163

    Article  CAS  Google Scholar 

  • Jiang G, Huang W, Li L, Wang X, Pang F, Zhang Y, Wang H (2012) Structure and properties of regenerated cellulose fibers from different technology processes. Carbohydr Polym 87(3):2012–2018

    Article  CAS  Google Scholar 

  • Kobayashi K, Huang CI, Lodge TP (1999) Thermoreversible gelation of aqueous methylcellulose solutions. Macromolecules 32(21):7070–7077

    Article  CAS  Google Scholar 

  • Kock C, Gahleitner M, Schausberger A, Ingolic E (2013) Polypropylene/polyethylene blends as models for high-impact propylene-ethylene copolymers, part 1: interaction between rheology and morphology. J Appl Polym Sci 128(3):1484–1496

    CAS  Google Scholar 

  • Laidler KJ (1984) The development of the Arrhenius equation. J Chem Educ 61(6):494–498

    Google Scholar 

  • Liu W, Budtova T (2012) Ionic liquid: a powerful solvent for homogeneous starch-cellulose mixing and making films with tuned morphology. Polymer 53(25):5779–5787

    Google Scholar 

  • Marsano E, Corsini P, Canetti M, Freddi G (2008) Regenerated cellulose-silk fibroin blends fibers. Int J Biol Macromol 43(2):106–114

    Article  CAS  Google Scholar 

  • Moly KA, Oommen Z, Bhagawan SS, Groeninckx G, Thomas S (2002) Melt rheology and morphology of LLDPE/EVA blends: effect of blend ratio, compatibilization, and dynamic crosslinking. J Appl Polym Sci 86(13):3210–3225

    Article  CAS  Google Scholar 

  • Nandan B, Kandpal LD, Mathur GN (2004) Poly(ether ether ketone)/poly(aryl ether sulfone) blends: melt rheological behavior. J Polym Sci Polym Phys 42(8):1548–1563

    Article  CAS  Google Scholar 

  • Phillips DM, Drummy LF, Conrady DG, Fox DM, Naik RR, Stone MO, Trulove PC, De Long HC, Mantz RA (2004) Dissolution and regeneration of Bombyx mori silk fibroin using ionic liquids. J Am Chem Soc 126(44):14350–14351

    Article  CAS  Google Scholar 

  • Phillips DM, Drummy LF, Naik RR, De Long HC, Fox DM, Trulove PC, Mantz RA (2005) Regenerated silk fiber wet spinning from an ionic liquid solution. J Mater Chem 15(39):4206–4208

    Article  CAS  Google Scholar 

  • Roubroeks JP, Kondo T (2012) Nano- and microstructures in stretched and non-stretched blend gels of cellulose and hemicelluloses. Holzforschung 66(8):993–1000

    Article  CAS  Google Scholar 

  • Shang S, Zhu L, Fan J (2011) Physical properties of silk fibroin/cellulose blend films regenerated from the hydrophilic ionic liquid. Carbohydr Polym 86(2):462–468

    Article  CAS  Google Scholar 

  • Shi X, Lu A, Cai J, Zhang L, Zhang H, Li J, Wang X (2012) Rheological behaviors and miscibility of mixture solution of polyaniline and cellulose dissolved in an aqueous system. Biomacromolecules 13(8):2370–2378

    Article  CAS  Google Scholar 

  • Sjoholm E, Gustafsson K, Eriksson B, Brown W, Colmsjo A (2000) Aggregation of cellulose in lithium chloride/N,N-dimethylacetamide. Carbohydr Polym 41(2):153–161

    Article  CAS  Google Scholar 

  • Sun N, Rodriguez H, Rahman M, Rogers RD (2011) Where are ionic liquid strategies most suited in the pursuit of chemicals and energy from lignocellulosic biomass? Chem Commun 47(5):1405–1421

    Article  CAS  Google Scholar 

  • Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124(18):4974–4975

    Article  CAS  Google Scholar 

  • Utracki L (1983) Melt flow of polymer blends. Polym Eng Sci 23:602

    Article  CAS  Google Scholar 

  • Utracki L (2002) Polymer blends handbook. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Wang Q, Yang Y, Chen X, Shao Z (2012) Investigation of rheological properties and conformation of silk fibroin in the solution of AmimCl. Biomacromolecules 13(6):1875–1881

    Article  CAS  Google Scholar 

  • Zhu X, Chen X, Wang X, Saba H, Zhang Y, Wang H (2013) Understanding the interactions in acrylic copolymer/1-butyl-3-methylimidazolium chloride from solution rheology. Polym Adv Technol 24(1):90–96

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by a grant from National Natural Science Foundation of China (51273041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yumei Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, Y., Mukuze, K.S., Zhang, Y. et al. Rheological behavior of cellulose/silk fibroin blend solutions with ionic liquid as solvent. Cellulose 21, 675–684 (2014). https://doi.org/10.1007/s10570-013-0117-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-0117-y

Keywords

Navigation