Skip to main content
Log in

Adsorption of silver on cellobiose and cellulose studied with MIES, UPS, XPS and AFM

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Metastable induced electron spectroscopy, ultraviolet photoelectron spectroscopy and X-ray photoelectron spectroscopy as well as atomic force microscopy were employed to study the adsorption of silver on cellulose as well as its precursor cellobiose. The formation of silver nanoparticles encapsulated by the organic film previously found for the monomer glucose is well reproduced for the dimer cellobiose. For the polymer cellulose on the other hand, no nanoparticle formation is found even though the surface is covered with silver atoms. No significant chemical interaction is found in any of these cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Asandulesa M, Topala I, Dumitrascu N (2010) Effect of helium DBD plasma treatment on the surface of wood samples. Holzforschung 64:223–227. doi:10.1515/hf.2010.025

    Article  CAS  Google Scholar 

  • Avramidis G, Wolkenhauer A, Zhen B, Militz H, Viöl W (2009) Water repellent coatings on wood surfaces generated by a dielectric barrier discharge plasma jet at atmospheric pressure. Proceedings of the European conference on wood modification

  • Bente M, Avramidis G, Förster S, Rohwer EG, Viöl W (2004) Wood surface modification in dielectric barrier discharges at atmospheric pressure for creating water repellent characteristics. Holz Roh Werkst 62:157–163. doi:10.1007/s00107-004-0475-0

    Article  CAS  Google Scholar 

  • Busnel F, Blanchard V, Prégent J, Stafford L, Riedl B, Blanchet P, Sarkissian A (2010) Modification of sugar maple (Acer saccharum) and black spruce (Picea mariana) wood surfaces in a dielectric barrier discharge (DBD) at atmospheric pressure. J Adhes Sci Technol 24:1401–1413. doi:10.1163/016942410X501007

    Article  Google Scholar 

  • Calonego FW, Severo ETD, Ballarin AW (2012) Physical and mechanical properties of thermally modified wood from E. grandis. Eur J Wood Prod 70:453–460. doi:10.1007/s00107-011-0568-5

    Article  CAS  Google Scholar 

  • Dahle S, Meuthen J, Viöl W, Maus-Friedrichs W (2012) Adsorption of silver on glucose studied with MIES, UPS, XPS and AFM. Appl Surf Sci. doi:10.1016/j.apsusc.2013.07.126

  • Ding X, Richter DL, Matuana LM, Heiden PA (2011) Efficient one-pot synthesis and loading of self-assembled amphiphilic chitosan nanoparticles for low-leaching wood preservation. Carbohyd Polym 86:58–64. doi:10.1016/j.carbpol.2011.04.002

    Article  CAS  Google Scholar 

  • El-Shishtawy RM, Asiri AM, Abdelwahed NAM, Al-Obtaibi MM (2011) In situ production of silver nanoparticle on cotton fabric and its antimicrobial evaluation. Cellulose 18:75–82. doi:10.1007/s10570-010-9455-1

    Article  CAS  Google Scholar 

  • Ertl G, Kuppers J (1985) Low energy electrons and surface chemistry. VCH, Weinheim

    Google Scholar 

  • Gindrat M, Höhle HM, von Niessen K, Guittienne Ph, Grange D, Hollenstein Ch (2011) Plasma spray-CVD: a new thermal spray process to produce thin films from liquid or gaseous precursors. J Therm Spray Techn 20:882–887. doi:10.1007/s11666-011-9655-8

    Article  Google Scholar 

  • Günster J, Krischok S, Stultz J, Goodman DW (2000) Interaction of Na with multilayer water on MgO(100). J Phys Chem B 104:7977–7980. doi:10.1021/jp001375+

    Article  Google Scholar 

  • Harada Y, Masuda S, Ozaki H (1997) Electron spectroscopy using metastable atoms as probes for solid surfaces. Chem Rev 97:1897–1952. doi:10.1021/cr940315v

    Article  CAS  Google Scholar 

  • Heinz B, Morgner H (1997) MIES investigation of alkanethiol monolayers self-assembled on Au(111) and Ag(111) surfaces. Surf Sci 372:100–116. doi:10.1016/S0039-6028(96)01131-4

    Article  CAS  Google Scholar 

  • Humar M, Budija F, Hrastnik D, Lesar B, Petrič M (2011) Potentials of liquefied CCB treated waste wood for wood preservation. Drvna Industrija 62:213–218

    Article  Google Scholar 

  • Ilic V, Saponjic Z, Vodnic V, Lazovic S, Dimitrijevic S, Jovancic P, Nedeljkovic JM, Radetic M (2010) Bactericidal efficiency of silver nanoparticles deposited onto radio frequency plasma pretreated polyester fabrics. Ind Eng Chem Res 49:7287–7293. doi:10.1021/ie1001313

    Article  CAS  Google Scholar 

  • Janardhanan R, Karuppaiah M, Hebalkar N, Rao TN (2009) Synthesis and surface chemistry of nano silver particles. Polyhedron 28:2522–2530. doi:10.1016/j.poly.2009.05.038

    Article  CAS  Google Scholar 

  • Kimura K, Katsumata S, Achiba Y, Yamazaki T, Iwata S (1981) Handbook of HeI Photoelektron spectra of fundamental organic molecules. Japan Scientific Societies Press, Tokyo and Halsted Press, New York

    Google Scholar 

  • Klarhöfer L (2009) Elektronenspektroskopische Untersuchungen an funktionalisiertem Holz und Holzbestandteilen. PhD thesis at the Clausthal University of Technology, ISBN 978-3-940394-74-3

  • Klarhöfer L, Viöl W, Maus-Friedrichs W (2010) Electron spectroscopy on plasma treated lignin and cellulose. Holzforschung 64:331–336. doi:10.1515/hf.2010.048

    Article  Google Scholar 

  • Kopp M, Roddewig E, Günther H, Ohms G, Leck M, Viöl W (2005) 157 nm fluorine laser ablation of wooden surfaces as an improved preparation technique for microscopy. Laser Phys Lett 2:16–20. doi:10.1002/lapl.200410143

    Article  Google Scholar 

  • Krischok S, Höfft O, Günster J, Stultz J, Goodman DW, Kempter V (2001) H2O interaction with bare and Li-precovered TiO2: studies with electron spectroscopies (MIES and UPS(HeI and II)). Surf Sci 495:8–18. doi:10.1016/S0039-6028(01)01570-9

    Article  CAS  Google Scholar 

  • Lesar B, Ugovsek A, Kariz M, Sernek M, Humar M, Kralj P (2011) Influence of boron compounds in adhesives on the bonding quality and fungicidal properties of wood. Wood Res Slovakia 56:385–392

    CAS  Google Scholar 

  • Liu Y, Tao Y, Lv X, Zhang Y, Di M (2010) Study on the surface properties of wood/polyethylene composites treated under plasma. Appl Surf Sci 257:1112–1118. doi:10.1016/j.apsusc.2010.08.032

    Article  CAS  Google Scholar 

  • Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PKH, Chiu JF, Che CM (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924. doi:10.1021/pr0504079

    Article  CAS  Google Scholar 

  • Maggini S, Feci E, Cappelletto E, Girardi F, Palanti S, DiMaggio R (2012) (I/O) hybrid alkoxysilane/zirconium-oxocluster copolymers as coatings for wood protection. Appl Mater Interfaces 4:4871–4881. doi:10.1021/am301206t

    Article  CAS  Google Scholar 

  • Maus-Friedrichs W, Dieckhoff S, Kempter V (1991) Alkali-metal-affected adsorption of CO on W(110) studied by metastable impact electron spectroscopy. Surf Sci 249:149–158. doi:10.1016/0039-6028(91)90840-O

    Article  CAS  Google Scholar 

  • Maus-Friedrichs W, Gunhold A, Frerichs M, Kempter V (2001) The interaction of CO2 and H2O with Sr films studied with MIES und UPS (HeI). Surf Sci 488:239–248. doi:10.1016/S0039-6028(01)01140-2

    Article  CAS  Google Scholar 

  • Moliton JP, Jussiaux-Devilder C, Trigaud T, Lazzaroni R, Bredas JL, Galaup S, Kihn Y, Sevely J (1999) Plasmons as the primary mechanism of ion-induced modifications in polymers. Philos Mag B 79:793–815. doi:10.1080/014186399257104

    Article  CAS  Google Scholar 

  • Morgner H (2000) The characterization of liquid and solid surfaces with metastable helium atoms. Adv At Mol Opt Phys 42:387–488. doi:10.1016/S1049-250X(08)60191-3

    Article  CAS  Google Scholar 

  • Namyslo JC, Kaufmann DE (2009) Chemical improvement of surfaces. Part 1: novel functional modification of wood with covalently bound organoboron compounds. Holzforschung 63:627–632. doi:10.1515/HF.2009.112

    Article  CAS  Google Scholar 

  • Nguila Inari G, Petrissans M, Lambert J, Ehrhardt JJ, Gérardin P (2006) XPS characterization of wood chemical composition after heat-treatment. Surf Interface Anal 38:1336–1342. doi:10.1002/sia.2455

    Article  Google Scholar 

  • Ochs D, Maus-Friedrichs W, Brause M, Günster J, Kempter V, Puchin V, Shluger A, Kantorovich L (1996) Study of the surface electronic structure of MgO bulk crystals and thin films. Surf Sci 365:557–571. doi:10.1016/0039-6028(96)00706-6

    Article  CAS  Google Scholar 

  • Ochs D, Brause M, Braun B, Maus-Friedrichs W, Kempter K (1998) CO2 chemisorption at Mg and MgO surfaces: a study with MIES and UPS (He I). Surf Sci 397:101–107. doi:10.1016/S0039-6028(97)00722-X

    Article  CAS  Google Scholar 

  • Odraskova M, Rahel J, Zahoranova A, Tino R, Cernak M (2008) Plasma activation of wood surface by diffuse coplanar surface barrier discharge. Plasma Chem Plasma P 28:203–211. doi:10.1007/s11090-007-9117-8

    Article  CAS  Google Scholar 

  • Podgorski L, Chevet B, Onic L, Merlin A (2000) Modification of wood wettability by plasma and corona treatments. Int J Adhes Adhes 20:103–111. doi:10.1016/S0143-7496(99)00043-3

    Article  CAS  Google Scholar 

  • Powell CJ, Jablonski A (2010a) Progress in quantitative surface analysis by X-ray photoelectron spectroscopy: current status and perspectives. J Electron Spectrosc Relat Phenom 178:331–346. doi:10.1016/j.elspec.2009.05.004

    Article  Google Scholar 

  • Powell CJ, Jablonski A (2010b) NIST electron inelastic-mean-free-path database—version 1.2. National Institute of Standards and Technology, Gaithersburg, MD. http://www.nist.gov/srd/nist71.cfm

  • Rehn P, Viöl V (2003) Dielectric barrier discharge treatments at atmospheric pressure for wood surface modification. Holz Roh Werkst 61:145–150. doi:10.1007/s00107-003-0369-6

    CAS  Google Scholar 

  • Rehn P, Wolkenhauer A, Bente M, Förster S, Viöl W (2003) Wood surface modification in dielectric barrier discharges at atmospheric pressure. Surf Coat Tech 174–175:515–518. doi:10.1016/S0257-8972(03)00372-4

    Article  Google Scholar 

  • Reilman RF, Msezane A, Manson ST (1976) Relative intensities in photoelectron spectroscopy of atoms and molecules. J Electron Spectrosc Relat Phenom 8:389–394. doi:10.1016/0368-2048(76)80025-4

    Article  CAS  Google Scholar 

  • Scofield JH (1976) Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J Electron Spectrosc Relat Phenom 8:129–137. doi:10.1016/0368-2048(76)80015-1

    Article  CAS  Google Scholar 

  • Stracke P, Krischok S, Kempter V (2001) Ag-adsorption on MgO: investigations with MIES and UPS. Surf Sci 473:86–96. doi:10.1016/S0039-6028(00)00956-0

    Article  CAS  Google Scholar 

  • Topala I, Dumitrascu N (2007) Dynamics of the wetting process on dielectric barrier discharge (DBD)-treated wood surfaces. J Adhes Sci Technol 21:1089–1096. doi:10.1163/156856107782105936

    Article  CAS  Google Scholar 

  • Toriz G, Gutierrez MG, Gonzalez-Alvarez V, Wendel A, Gatenholm P, Martinez-Gomez AD (2008) Highly hydrophobic wood surfaces prepared by treatment with atmospheric pressure dielectric barrier discharges. J Adhes Sci Technol 22:2059–2078. doi:10.1163/156856108X332561

    Article  CAS  Google Scholar 

  • Treu A, Larnøy E, Militz H (2011) Process related copper leaching during a combined wood preservation process. Eur J Wood Prod 69:263–269. doi:10.1007/s00107-010-0427-9

    Article  CAS  Google Scholar 

  • Venediktov EA, Ganiev ARF, Padokhin VA (2012) Mechanism of formation of silver nanoparticle ensembles in an aqueous solution of glucose. Dokl Chem 442:34–36. doi:10.1134/S0012500812020085

    Article  CAS  Google Scholar 

  • Wolkenhauer A, Meiners A, Rehn P, Avramidis G, Leck M, Viöl W (2005) Haftverbesserung von Holzbeschichtungen durch Plasma-Vorbehandlung. Holztechnologie 46:40–47

    Google Scholar 

  • Wolkenhauer A, Avramidis G, Hauswald E, Militz H, Viöl W (2009) Sanding versus plasma treatment of aged wood: a comparison with respect of surface energy. Int J Adhes Adhes 29:18–22. doi:10.1016/j.ijadhadh.2007.11.001

    Article  CAS  Google Scholar 

  • Xue CH, Chen J, Yin W, Jia ST, Ma JZ (2012) Temperature-dependent ferroelectric and dielectric properties of Bi3.25La0.75Ti3O12 thin films. Appl Surf Sci 256:2468–2472. doi:10.1016/j.apsusc.2009.10.089

    Article  Google Scholar 

  • Yang KY, Choi KC, Ahn CW (2009) Surface plasmon-enhanced energy transfer in an organic light-emitting device structure. Opt Express 17:11495–11504. doi:10.1364/OE.17.011495

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thankfully acknowledge the provision of the Atomic Force Microscope by the group of Prof. W. Daum (Institut für Energieforschung und Physikalische Technologien, TU Clausthal) as well as the technical assistance of Lienhard Wegewitz and Dana Schulte Genannt Berthold. Finally, we thank the Deutsche Forschungsgemeinschaft (DFG) for financial support under Project Numbers MA 1893/18-1 and VI 359/9-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Maus-Friedrichs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahle, S., Meuthen, J., Viöl, W. et al. Adsorption of silver on cellobiose and cellulose studied with MIES, UPS, XPS and AFM. Cellulose 20, 2469–2480 (2013). https://doi.org/10.1007/s10570-013-0009-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-0009-1

Keywords

Navigation