Skip to main content
Log in

Effects of pressurized hot water extraction on the nanoscale structure of birch sawdust

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Pressurized hot water extraction with a flow-through system was used to extract hemicelluloses and lignin from birch sawdust. The structure of the extraction residue was studied on various levels. Molecular mass distributions were determined with gel permeation chromatography and the crystal structure of cellulose was characterized using wide-angle X-ray scattering (WAXS). Information on the short-range order of cellulose microfibrils and on the nanoscale pore structure was obtained with small-angle X-ray scattering (SAXS), and the micrometre scale cellular morphology was imaged with X-ray microtomography. The pressurized hot water treatment was observed to increase the lateral width of cellulose crystallites, determined with WAXS, whereas a possible small decrease in the crystallinity of cellulose compared to native wood was detected. The molecular mass of cellulose remained at a relatively high level. According to the SAXS results, a tighter lateral association of cellulose microfibrils was observed in the extracted samples, which possibly led to opening of pores between bundles of microfibrils, as indicated by an increased specific surface area. A reduction in the thickness of the fibre cell walls was evidenced by X-ray microtomography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861. doi:10.1016/j.biortech.2009.11.093

    Article  CAS  Google Scholar 

  • Andersson S, Serimaa R, Paakkari T, Saranpää P, Pesonen E (2003) Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies). J Wood Sci 49:531–537. doi:10.1007/s10086-003-0518-x

    Google Scholar 

  • Ando H, Sakaki T, Kokusho T, Shibata M, Uemura Y, Hatate Y (2000) Decomposition behavior of plant biomass in hot-compressed water. Ind Eng Chem Res 39:3688–3693. doi:10.1021/ie0000257

    Article  CAS  Google Scholar 

  • Arantes V, Saddler JN (2010) Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuels 3:4. doi:10.1186/1754-6834-3-4

    Article  Google Scholar 

  • Bansal P, Hall M, Realff MJ, Lee JH, Bommarius AS (2010) Multivariate statistical analysis of X-ray data from cellulose: a new method to determine degree of crystallinity and predict hydrolysis rates. Bioresour Technol 101:4461–4471. doi:10.1016/j.biortech.2010.01.068

    Article  CAS  Google Scholar 

  • Berggren R, Berthold F, Sjöholm E, Lindström M (2003) Improved methods for evaluating the molar mass distributions of cellulose in kraft pulp. J Appl Polym Sci 88:1170–1179. doi:10.1002/app.11767

    Article  CAS  Google Scholar 

  • Bhuiyan MTR, Sobue NHN (2000) Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions. J Wood Sci 46:431–436. doi:10.1007/BF00765800

    Article  CAS  Google Scholar 

  • Borrega M, Nieminen K, Sixta H (2011) Degradation kinetics of the main carbohydrates in birch wood during hot water extraction in a batch reactor at elevated temperatures. Bioresour Technol 102:10,724–10,732. doi:10.1016/j.biortech.2011.09.027

    Article  CAS  Google Scholar 

  • Dougherty R, Kunzelmann KH (2007) Computing local thickness of 3D structures with ImageJ. Microsc Microanal 13:1678–1679. doi:10.1017/S1431927607074430

    Article  Google Scholar 

  • Driemeier C, Calligaris GA (2011) Theoretical and experimental developments for accurate determination of crystallinity of cellulose I materials. J Appl Crystallogr 44:184–192. doi:10.1107/S0021889810043955

    Article  CAS  Google Scholar 

  • Driemeier C, Pimenta MTB, Rocha GJM, Oliveira MM, Mello DB, Maziero P, Gonçalves AR (2011) Evolution of cellulose crystals during prehydrolysis and soda delignification of sugarcane lignocellulose. Cellulose 18:1509–1519. doi:10.1007/s10570-011-9592-1

    Article  CAS  Google Scholar 

  • Fink HP, Hofmann D, Philipp B (1995) Some aspects of lateral chain order in cellulosics from X-ray scattering. Cellulose 2:51–70. doi:10.1007/BF00812772

    CAS  Google Scholar 

  • French AD, Cintrón MS (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20:583–588. doi:10.1007/s10570-012-9833-y

    Article  CAS  Google Scholar 

  • Hick JF, Casebier RL, Hamilton JK (1985) Dissolving pulp manufacture. In: Ingruber OV, Kucerek MJ, Wong A (eds) Sulfite Science & Technology, CPPA, pp 213–243

  • Hu F, Ragauskas A (2012) Pretreatment and lignocellulosic chemistry. Bioenerg Res 5:1043–1066. doi:10.1007/s12155-012-9208-0

    Article  CAS  Google Scholar 

  • Inagaki T, Siesler HW, Mitsui K, Tsuchikawa S (2010) Difference of the crystal structure of cellulose in wood after hydrothermal and aging degradation: a NIR spectroscopy and XRD study. Biomacromolecules 11:2300–2305. doi:10.1021/bm100403y

    Article  CAS  Google Scholar 

  • Kilpeläinen P, Leppänen K, Spetz P, Kitunen V, Ilvesniemi H, Pranovich A, Willför S (2012) Pressurised hot water extraction of acetylated xylan from birch sawdust. Nordic Pulp Paper Res J 27:680–688. doi:10.3183/NPPRJ-2012-27-04-p680-688

    Article  Google Scholar 

  • Kumar R, Mago G, Balan V, Wyman CE (2009) Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour Technol 100:3948–3962. doi:10.1016/j.biortech.2009.01.075

    Article  CAS  Google Scholar 

  • Lee JM, Jameel H, Venditti RA (2010) A comparison of the autohydrolysis and ammonia fiber explosion (AFEX) pretreatments on the subsequent enzymatic hydrolysis of coastal Bermuda grass. Bioresour Technol 101:5449–5458. doi:10.1016/j.biortech.2010.02.055

    Article  CAS  Google Scholar 

  • Leppänen K, Andersson S, Torkkeli M, Knaapila M, Kotelnikova N, Serimaa R (2009) Structure of cellulose and microcrystalline cellulose from various wood species, cotton and flax studied by X-ray scattering. Cellulose 16:999–1015. doi:10.1007/s10570-009-9298-9

    Article  Google Scholar 

  • Leppänen K, Bjurhager I, Peura M, Kallonen A, Suuronen JP, Penttilä P, Love J, Fagerstedt K, Serimaa R (2011a) X-ray scattering and microtomography study on the structural changes of never-dried silver birch, European aspen and hybrid aspen during drying. Holzforschung 65:865–873. doi:10.1515/HF.2011.108

    Article  Google Scholar 

  • Leppänen K, Spetz P, Pranovich A, Hartonen K, Kitunen V, Ilvesniemi H (2011b) Pressurized hot water extraction of Norway spruce hemicelluloses using a flow-through system. Wood Sci Technol 45:223–236. doi:10.1007/s00226-010-0320-z

    Article  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686. doi:10.1016/j.biortech.2004.06.025

    Article  CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082. doi:10.1021/ja0257319

    Article  CAS  Google Scholar 

  • Okano T, Koyanagi A (1986) Structural variation of native cellulose related to its source. Biopolymers 25:851–861. doi:10.1002/bip.360250508

    Article  CAS  Google Scholar 

  • Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10. doi:10.1186/1754-6834-3-10

    Article  Google Scholar 

  • Penttilä PA, Várnai A, Leppänen K, Peura M, Kallonen A, Jääskeläinen P, Lucenius J, Ruokolainen J, Siika-aho M, Viikari L, Serimaa R (2010) Changes in submicrometer structure of enzymatically hydrolyzed microcrystalline cellulose. Biomacromolecules 11:1111–1117. doi:10.1021/bm1001119

    Article  Google Scholar 

  • Pönni R, Vuorinen T, Kontturi E (2012) Proposed nano-scale coalescence of cellulose in chemical pulp fibers during technical treatments. BioResources 7:6077–6108

    Google Scholar 

  • Segal L, Creely JJ, Martin AE Jr, Conrad CM (1959) Degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794. doi:10.1177/004051755902901003

    Article  CAS  Google Scholar 

  • Thygesen A, Oddershede J, Lilholt H, Thomsen AB, Ståhl K (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12:563–576. doi:10.1007/s10570-005-9001-8

    Article  CAS  Google Scholar 

  • Vainio U, Maximova N, Hortling B, Laine J, Stenius P, Simola LK, Gravitis J, Serimaa R (2004) Morphology of dry lignins and size and shape of dissolved kraft lignin particles by X-ray scattering. Langmuir 20:9736–9744. doi:10.1021/la048407v

    Article  CAS  Google Scholar 

  • Wise LE, Murphy M, D’Addieco AA (1946) Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Pap Trade J 122:35–43

    CAS  Google Scholar 

  • Xiao LP, Sun ZJ, Shi ZJ, Xu F, Sun RC (2011) Impact of hot compressed water pretreatment on the structural changes of woody biomass for bioethanol production. BioResources 6:1576–1598

    CAS  Google Scholar 

  • Yamamoto M, Kuramae R, Yanagisawa M, Ishii D, Isogai A (2011) Light-scattering analysis of native wood holocelluloses totally dissolved in LiCl-DMI solutions: high probability of branched structures in inherent cellulose. Biomacromolecules 12:3982–3988. doi:10.1021/bm201211z

    Article  CAS  Google Scholar 

  • Yu Y, Wu H (2010) Significant differences in the hydrolysis behavior of amorphous and crystalline portions within microcrystalline cellulose in hot-compressed water. Ind Eng Chem Res 49:3902–3909. doi:10.1021/ie901925g

    Article  CAS  Google Scholar 

Download references

Acknowledgments

University of Helsinki Research Funds is acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paavo A. Penttilä.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Penttilä, P.A., Kilpeläinen, P., Tolonen, L. et al. Effects of pressurized hot water extraction on the nanoscale structure of birch sawdust. Cellulose 20, 2335–2347 (2013). https://doi.org/10.1007/s10570-013-0001-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-0001-9

Keywords

Navigation