Skip to main content
Log in

A simple method for controlling the bacterial cellulose nanofiber density in 3D scaffolds and its effect on the cell behavior

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this paper, we provide a simple method to control cellulose nanofiber density inside three-dimensional (3D) gelatin/bacterial cellulose (Gel/BC) scaffold. Different cellulose nanofiber densities inside 3D scaffold were achieved by changing the bacterial density during cellulose biosynthesis. By increasing bacterial densities, Gel/BC scaffolds exhibited higher BC nanofiber density (average distance between cellulose nanofiber and fiber area ratio). And higher BC nanofiber density improved mechanical properties of scaffold, while the average pore size of scaffold was constant. Nanofiber density has been shown to direct cell behavior on 2D substrates. It is important to study that whether the BC nanofiber density can modulate the cell behavior in 3D scaffold. It is the first time to evaluate the effect of BC nanofiber density on cell behavior in 3D scaffold. Results revealed that higher BC nanofiber density in scaffold could facilitate adipose-derived stem cells (ADSCs) proliferation. Interestingly, ADSCs seeded in scaffolds with higher BC nanofiber density showed more spherical and smaller size which meant the potential preservation of ADSCs phenotype. Our findings highlight the importance of BC nanofiber density on cell behavior and provide new guidelines for the construction of tissue engineered scaffold for tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baker BM, Trappmann B, Wang WY, Sakar MS, Kim IL, Shenoy VB, Burdick JA, Chen CS (2015) Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments. Nat Mater 14:1262–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bean AC, Tuan RS (2015) Fiber diameter and seeding density influence chondrogenic differentiation of mesenchymal stem cells seeded on electrospun poly(ε-caprolactone) scaffolds. Biomed Mater 10:015018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berti FV, Rambo CR, Dias PF, Porto LM (2013) Nanofiber density determines endothelial cell behavior on hydrogel matrix. Mater Sci Eng, C 33:4684–4691

    Article  CAS  Google Scholar 

  • Bodin A, Ahrenstedt L, Fink H, Brumer H, Risberg B, Gatenholm P (2007) Modification of Nanocellulose with a xyloglucan-RGD conjugate enhances adhesion and proliferation of endothelial cells: implications for tissue engineering. Biomacromol 8:3697–3704

    Article  CAS  Google Scholar 

  • Chaudhuri O, Gu L, Klumpers D, Darnell M, Bencherif SA, Weaver JC, Huebsch N, Lee H-p, Lippens E, Duda GN, Mooney DJ (2016) Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat Mater 15:326–334

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Zhou X, Lin Q, Jiang D (2014) Bacterial cellulose/gelatin composites: in situ preparation and glutaraldehyde treatment. Cellulose 21:2679–2693

    Article  CAS  Google Scholar 

  • Chen H, Malheiro AdBFB, van Blitterswijk C, Mota C, Wieringa PA, Moroni L (2017) Direct writing electrospinning of scaffolds with multidimensional fiber architecture for hierarchical tissue engineering. ACS Appl Mater Interfaces 9:38187–38200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cosgrove BD, Mui KL, Driscoll TP, Caliari SR, Mehta KD, Assoian RK, Burdick JA, Mauck RL (2016) N-cadherin adhesive interactions modulate matrix mechanosensing and fate commitment of mesenchymal stem cells. Nat Mater 15:1297–1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Oliveira Magalhães P, Lopes AM, Mazzola PG, Rangel-Yagui C, Penna TCV, Pessoa A Jr (2007) Methods of endotoxin removal from biological preparations: a review. J Pharm Pharma Sci 10:388–404

    Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  CAS  Google Scholar 

  • Feng C, Xu YM, Fu Q, Zhu WD, Cui L, Chen J (2010) Evaluation of the biocompatibility and mechanical properties of naturally derived and synthetic scaffolds for urethral reconstruction. J Biomed Mater Res, Part A 94A:317–325

    Article  CAS  Google Scholar 

  • Fu Q, Deng CL, Zhao RY, Wang Y, Cao Y (2014) The effect of mechanical extension stimulation combined with epithelial cell sorting on outcomes of implanted tissue-engineered muscular urethras. Biomaterials 35:105–112

    Article  CAS  PubMed  Google Scholar 

  • Hirayama K, Okitsu T, Teramae H, Kiriya D, Onoe H, Takeuchi S (2013) Cellular building unit integrated with microstrand-shaped bacterial cellulose. Biomaterials 34:2421–2427

    Article  CAS  PubMed  Google Scholar 

  • Kang HW, Tabata Y, Ikada Y (1999) Fabrication of porous gelatin scaffolds for tissue engineering. Biomaterials 20:1339–1344

    Article  CAS  PubMed  Google Scholar 

  • Lai Y, Asthana A, Kisaalita WS (2011) Biomarkers for simplifying HTS 3D cell culture platforms for drug discovery: the case for cytokines. Drug Discov Today 16:293–297

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Lv XG, Chen SY, Wang BX, Feng C, Xu YM, Wang HP (2016) Improved cell infiltration and vascularization of three-dimensional bacterial cellulose nanofibrous scaffolds by template biosynthesis. RSC Adv 6:42229–42239

    Article  CAS  Google Scholar 

  • Liu WG, Yao KD, Wang GC, Li HX (2000) Intrinsic fluorescence investigation on the change in conformation of cross-linked gelatin gel during volume phase transition. Polymer 41:7589–7592

    Article  CAS  Google Scholar 

  • Luo J, Yang ST (2004) Effects of three-dimensional culturing in a fibrous matrix on cell cycle, apoptosis, and MAb production by hybridoma cells. Biotechnol Prog 20:306–315

    Article  CAS  PubMed  Google Scholar 

  • Lv XG, Feng C, Liu YD, Peng XF, Chen SY, Xiao DD, Wang HP, Li Z, Xu YM, Lu MJ (2018) A smart bilayered scaffold supporting keratinocytes and muscle cells in micro/nano-scale for urethral reconstruction. Theranostics 8:3153–3163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A (2010) Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31:5536–5544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park S, Park J, Jo I, Cho SP, Sung D, Ryu S, Park M, Min KA, Kim J, Hong S, Hong BH, Kim BS (2015) In situ hybridization of carbon nanotubes with bacterial cellulose for three-dimensional hybrid bioscaffolds. Biomaterials 58:93–102

    Article  CAS  PubMed  Google Scholar 

  • Place ES, Evans ND, Stevens MM (2009) Complexity in biomaterials for tissue engineering. Nat Mater 8:457–470

    Article  CAS  PubMed  Google Scholar 

  • Powell HM, Boyce ST (2008) Fiber density of electrospun gelatin scaffolds regulates morphogenesis of dermal-epidermal skin substitutes. J Biomed Mater Res, Part A 84A:1078–1086

    Article  CAS  Google Scholar 

  • Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA (2002) “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science 298:597–600

    Article  CAS  PubMed  Google Scholar 

  • Ravichandran R, Sundarrajan S, Venugopal JR, Mukherjee S, Ramakrishna S (2012) Advances in polymeric systems for tissue engineering and biomedical applications. Macromol Biosci 12:286–311

    Article  CAS  PubMed  Google Scholar 

  • Scadden DT (2006) The stem-cell niche as an entity of action. Nature 441:1075–1079

    Article  CAS  PubMed  Google Scholar 

  • Schmidt D, Von Hochstetter AR (1995) The use of CD31 and collagen IV as vascular markers a study of 56 vascular lesions. Pathol Res Pract 191:410–414

    Article  CAS  PubMed  Google Scholar 

  • Su K, Wang C (2015) Recent advances in the use of gelatin in biomedical research. Biotechnol Lett 37(11):2139–2145

    Article  CAS  PubMed  Google Scholar 

  • Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431

    Article  CAS  PubMed  Google Scholar 

  • Trappmann B, Baker BM, Polacheck WJ, Choi CK, Burdick JA, Chen CS (2017) Matrix degradability controls multicellularity of 3D cell migration. Nat Commun 8:1–8

    Article  CAS  Google Scholar 

  • Walles T, Herden T, Haverich A, Mertsching H (2003) Influence of scaffold thickness and scaffold composition on bioartificial graft survival. Biomaterials 24:1233–1239

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Fu Q, Zhao RY, Deng CL (2014) Muscular tubes of urethra engineered from adipose-derived stem cells and polyglycolic acid mesh in a bioreactor. Biotechnol Lett 36:1909–1916

    Article  CAS  PubMed  Google Scholar 

  • Wang BX, Huang CS, Chen SY, Xing XY, Zhang MH, Wu QK, Wang HP (2018) Hybrid scaffolds enhanced by nanofibers improve in vitro cell behavior for tissue regeneration. Cellulose 25:7113–7125

    Article  CAS  Google Scholar 

  • Watt FM, Hogan BLM (2000) Out of Eden: stem cells and their niches. Science 287:1427–1430

    Article  CAS  PubMed  Google Scholar 

  • Xie JW, Liu WY, MacEwan MR, Bridgman PC, Xia YN (2014) Neurite outgrowth on electrospun nanofibers with uniaxial alignment: the effects of fiber density, surface coating, and supporting substrate. ACS Nano 8:1878–1885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie J, Bao M, Bruekers SMC, Huck WTS (2017) Collagen gels with different fibrillar microarchitectures elicit different cellular responses. ACS Appl Mater Interfaces 9:19630–19637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin N, Chen SY, Li Z, Ouyang Y, Hu WL, Tang L, Zhang W, Zhou BH, Yang JX, Xu QS, Wang HP (2012) Porous bacterial cellulose prepared by a facile surfactant-assisted foaming method in azodicarbonamide-NaOH aqueous solution. Mater Lett 81:131–134

    Article  CAS  Google Scholar 

  • Yin N, Stilwell MD, Santos TMA, Wang HP, Weibel DB (2015) Agarose particle-templated porous bacterial cellulose and its application in cartilage growth in vitro. Acta Biomater 12:129–138

    Article  CAS  PubMed  Google Scholar 

  • Zaborowska M, Bodin A, Baeckdahl H, Popp J, Goldstein A, Gatenholm P (2010) Microporous bacterial cellulose as a potential scaffold for bone regeneration. Acta Biomater 6:2540–2547

    Article  CAS  PubMed  Google Scholar 

  • Zhang SC, Liu P, Chen L, Wang YJ, Wang ZG, Zhang B (2015) The effects of spheroid formation of adipose-derived stem cells in a microgravity bioreactor on stemness properties and therapeutic potential. Biomaterials 41:15–25

    Article  CAS  PubMed  Google Scholar 

  • Zhou CJ, Wu QL (2011) A novel polyacrylamide nanocomposite hydrogel reinforced with natural chitosan nanofibers. Colloids Surf B Biointerfaces 84:155–162

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (51703078, and 51573024) and the Fundamental Research Funds for the Central Universities (17D310612).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhe Li or Shiyan Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2684 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Lv, X., Li, Z. et al. A simple method for controlling the bacterial cellulose nanofiber density in 3D scaffolds and its effect on the cell behavior. Cellulose 26, 7411–7421 (2019). https://doi.org/10.1007/s10570-019-02602-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02602-x

Keywords

Navigation