Skip to main content
Log in

A new bio-based nanocomposite: fibrillated TEMPO-oxidized celluloses in hydroxypropylcellulose matrix

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Utilization of TEMPO-oxidized celluloses in bio-based nanocomposites is reported for the first time. TEMPO-oxidized wood pulps (net carboxylate content 1.1 mmol/g cellulose) were fibrillated to varying degrees using a high intensity ultrasonic processor. The degree of fibrillation was controlled by varying sonication time from 1 to 20 min. The sonication products were then characterized independently and as fillers (5 wt% loading) in hydroxypropyl cellulose nanocomposite films. Nanofibril yields ranging from 11 to 98 wt% (on fiber weight basis) were obtained over the range of sonication times used. Suspension viscosities increased initially with sonication time, peaked with gel-like behavior at 10 min of sonication and then decreased with further sonication. The thermal degradation temperature of unfibrillated oxidized pulps was only minimally affected (6 °C decrease) by the fibrillation process. Dynamic mechanical analysis of the nanocomposites revealed strong fibril-matrix interactions as evidenced by remarkable storage modulus retention at high temperatures and a suppression of matrix glass transition at “high” (~5 wt%) nanofibril loadings. Creep properties likewise exhibited significant (order of magnitude) suppression of matrix flow at high temperatures. It was also believed, based on morphologies of freeze-fracture surfaces that the nanocomposites may be characterized by high fracture toughness. Direct fracture testing will however be necessary to verify this suspicion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054. doi:10.1021/bm049300p

    Article  CAS  Google Scholar 

  • Bragd PL, van Bekkum H, Besemer AC (2004) TEMPO-mediated oxidation of polysaccharides: survey of methods and applications. Top Catal 27:49–66. doi:10.1023/B:TOCA.0000013540.69309.46

    Article  CAS  Google Scholar 

  • Chazeau L, Cavaille JY, Canova G, Dendievel R, Boutherin B (1999) Viscoelastic properties of plasticized PVC reinforced with cellulose whiskers. J Appl Polym Sci 71:1797–1808. doi :10.1002/(SICI)1097-4628(19990314)71:11<1797::AID-APP9>3.0.CO;2-E

    Article  CAS  Google Scholar 

  • Dalmas F, Cavaille JY, Gauthier C, Chazeau L, Dendievel R (2007) Viscoelastic behavior and electrical properties of flexible nanofiber filled polymer nanocomposites. Influence of processing conditions. Compos Sci Technol 67:829–839. doi:10.1016/j.compscitech.2006.01.030

    Article  CAS  Google Scholar 

  • Edgar CD, Gray DG (2003) Smooth model cellulose I surfaces from nanocrystal suspensions. Cellulose 10:299–306. doi:10.1023/A:1027333928715

    Article  CAS  Google Scholar 

  • El-Sakhawy M (2000) Characterization of modified oxycellulose. J Therm Anal Calorim 63:549–558. doi:10.1023/A:1010150122848

    Article  Google Scholar 

  • Favier V, Chanzy H, Cavaille JY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367. doi:10.1021/ma00122a053

    Article  CAS  Google Scholar 

  • Gindl W, Keckes J (2005) All-cellulose nanocomposite. Polymer (Guildf) 46:10221–10225. doi:10.1016/j.polymer.2005.08.040

    Article  CAS  Google Scholar 

  • Grunert M, Winter WT (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J Polym Environ 10:27–30. doi:10.1023/A:1021065905986

    Article  CAS  Google Scholar 

  • Helbert W, Cavaille JY, Dufresne A (1996) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. 1. Processing and mechanical behavior. Polym Compos 17:604–611. doi:10.1002/pc.10650

    Article  CAS  Google Scholar 

  • Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci Appl Polym Symp 37:797–813

    CAS  Google Scholar 

  • Katz S, Beatson RP, Scallan AM (1984) The determination of strong and weak acidic groups in sulfite pulps. Sven Papperstidn 87:R48–R53

    CAS  Google Scholar 

  • Kumar V, Yang TR (2002) HNO3/H3PO4-NANO(2) mediated oxidation of cellulose—preparation and characterization of bioabsorbable oxidized celluloses in high yields and with different levels of oxidation. Carbohydr Polym 48:403–412. doi:10.1016/S0144-8617(01)00290-9

    Article  CAS  Google Scholar 

  • Lasseuguette E, Roux D, Nishiyama Y (2008) Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp. Cellulose 15:425–433. doi:10.1007/s10570-007-9184-2

    Article  CAS  Google Scholar 

  • Ljungberg N, Bonini C, Bortolussi F, Boisson C, Heux L, Cavaille JY (2005) New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics. Biomacromolecules 6:2732–2739. doi:10.1021/bm050222v

    Article  CAS  Google Scholar 

  • Matsumura H, Sugiyama J, Glasser WG (2000) Cellulosic nanocomposites. I. Thermally deformable cellulose hexanoates from heterogeneous reaction. J Appl Polym Sci 78:2242–2253. doi :10.1002/1097-4628(20001220)78:13<2242::AID-APP20>3.0.CO;2-5

    Article  CAS  Google Scholar 

  • Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys Mater Sci Process 80:155–159

    Article  CAS  Google Scholar 

  • Petersson L, Oksman K (2006) Preparation and properties of biopolymer-based nanocomposite films using microcrystalline cellulose. Cellul Nanocompos Process Charact Prop 938:132–150

    CAS  Google Scholar 

  • Petersson L, Kvien I, Oksman K (2007) Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Compos Sci Technol 67:2535–2544. doi:10.1016/j.compscitech.2006.12.012

    Article  CAS  Google Scholar 

  • Rials TG, Glasser WG (1988) Thermal and dynamic mechanical-properties of hydroxypropyl cellulose films. J Appl Polym Sci 36:749–758. doi:10.1002/app.1988.070360402

    Article  CAS  Google Scholar 

  • Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983–1989. doi:10.1021/bm0497769

    Article  CAS  Google Scholar 

  • Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691. doi:10.1021/bm060154s

    Article  CAS  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491. doi:10.1021/bm0703970

    Article  CAS  Google Scholar 

  • Samir MASA, Alloin F, Sanchez JY, El Kissi N, Dufresne A (2004) Preparation of cellulose whiskers reinforced nanocomposites from an organic medium suspension. Macromolecules 37:1386–1393. doi:10.1021/ma030532a

    Article  CAS  Google Scholar 

  • Svagan AJ, Samir MASA, Berglund LA (2007) Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromolecules 8:2556–2563. doi:10.1021/bm0703160

    Article  CAS  Google Scholar 

  • Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci Appl Polym Symp 37:815

    CAS  Google Scholar 

  • Varma AJ, Chavan VB (1995) A study of crystallinity changes in oxidized celluloses. Polym Degrad Stab 49:245–250. doi:10.1016/0141-3910(95)87006-7

    Article  CAS  Google Scholar 

  • Wang N, Ding EY, Cheng RS (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer (Guildf) 48:3486–3493. doi:10.1016/j.polymer.2007.03.062

    Article  CAS  Google Scholar 

  • Wibowo AC, Misra M, Park HM, Drzal LT, Schalek R, Mohanty AK (2006) Biodegradable nanocomposites from cellulose acetate: mechanical, morphological, and thermal properties. Compos Part A Appl Sci Manuf 37:1428–1433

    Article  Google Scholar 

  • Wise LE, Murphy M, D’Addieco AA (1946) Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Pap Trade J 122:11–19

    Google Scholar 

  • Zerda AS, Lesser AJ (2001) Intercalated clay nanocomposites: morphology, mechanics, and fracture behavior. J Polym Sci Part B Polym Phys 39:1137–1146. doi:10.1002/polb.1090

    Article  CAS  Google Scholar 

  • Zilg C, Mulhaupt R, Finter J (1999) Morphology and toughness/stiffness balance of nanocomposites based upon anhydride-cured epoxy resins and layered silicates. Macromol Chem Phys 200:661–670. doi :10.1002/(SICI)1521-3935(19990301)200:3<661::AID-MACP661>3.0.CO;2-4

    Article  CAS  Google Scholar 

  • Zimmermann T, Pohler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6:754–761. doi:10.1002/adem.200400097

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by the USDA CSREES Special Grant No. 2006-06204 and the Sustainable Engineered Materials Institute, College of Natural Resources, Virginia Tech, Blacksburg, VA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Audrey Zink-Sharp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, R.K., Zink-Sharp, A., Renneckar, S.H. et al. A new bio-based nanocomposite: fibrillated TEMPO-oxidized celluloses in hydroxypropylcellulose matrix. Cellulose 16, 227–238 (2009). https://doi.org/10.1007/s10570-008-9269-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-008-9269-6

Keywords

Navigation