Skip to main content
Log in

Suppression and the code: Beyond codons and anticodons

  • Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Summary

Specificity and accuracy in the decoding of genetic information during mRNA-programmed, ribosome-dependent polypeptide synthesis (translation) involves more than just hydrogen bonding between two anti-parallel trinucleotides, the mRNA codon and the tRNA anticodon. Other macromolecules are also involved, and translational suppression has been and continues to be an appropriate and effective way to identify them, as well as other parts of mRNA and tRNA, and to elucidate the structural determinants of their functions and interactions. Experimental results are presented that bear upon codon context effects, the role of tRNA structural features in aminoacyl-tRNA selection and in codon selection (reading-frame maintenance), determinants of tRNA identity, elongation factor suppressor mutants, and termination codon recognition by the ribosomal RNA of the small subunit. The examples presented illustrate the complexity of the decoding process and the interconnectedness of translational macromolecules in achieving specificity and accuracy in polypeptide synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersson, S. G. E., Buckingham, R. H., and Kurland, C. G., Does codon composition influence ribosome function? EMBO J.3 (1984) 91–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Björk, G. R., Ericson, J. V., Gustafson, C. E. D., Hagervall, T. G., Jönsson, Y. H., and Wikström, P. M., Transfer RNA modification. A. Rev. Biochem.56 (1987) 263–287.

    Article  Google Scholar 

  3. Brimacombe, R., Atmadja, J., Stiege, W., and Schüler, D., A detailed model of the three-dimensional structure ofEscherichia coli 16S ribosomal RNA in situ in the 30S subunit. J. molec. Biol.199 (1988) 115–136.

    Article  CAS  PubMed  Google Scholar 

  4. Brody, S., and Yanofsky C., Suppressor gene alteration of protein primary structure. Proc. natl Acad. Sci. USA50 (1961) 9–16.

    Article  Google Scholar 

  5. Buckingham, R. H., and Grosjean, H., The accuracy of mRNA-tRNA recognition in: Accuracy in Molecular Processes, pp. 83–126. Eds T. B. L. Kirkwood, R. F. Rosenberger and D. J. Galas. Chapman and Hall, New York 1986.

    Chapter  Google Scholar 

  6. Buckingham, R. H., Murgola, E. J., Sørensen, P., Pagel, F. T., Hijazi, K. A., Mims, B. H., Figueroa, N., Brechemier-Baey, D., and Coppin-Raynal, E., Effects of codon context on the suppression of nonsense and missense mutations in thetrpA gene ofE. coli, in: The Ribosome: Structure, Function, and Evolution, pp. 541–545. Eds W. E. Hill, A. Dahlberg, R. A. Garrett, P. B. Moore, D. Schlessinger and J. R. Warner. American Society for Microbiology, Washington, D.C., 1990.

    Google Scholar 

  7. Caskey, C. T., Forrester, W. C., and Tate, W. Peptide chain termination, in: Gene Expression: The Translational Step and its Control, pp. 149–158. Eds B. F. C. Clark and H. U. Petersen. Munksgaard, Copenhagen 1987.

    Google Scholar 

  8. Craigen, W. J., and Caskey, C. T., The function, structure and regulation ofE. coli peptide chain release factors. Biochimie69 (1987) 1031–1041.

    Article  CAS  PubMed  Google Scholar 

  9. Crick, F. H. C., On protein synthesis, in: The Biological Replication of Macromolecules, pp. 138–163, Symp. of Soc. exp. Biol., No. XII. Academic Press Inc., New York 1958.

    Google Scholar 

  10. Crick, F. H. C., Codon-anticodon pairing: The wobble hypothesis. J. molec. Biol.,19 (1966) 548–555.

    Article  CAS  PubMed  Google Scholar 

  11. Culbertson, M. R., Leeds, P., Sandbaken, M. G., and Wilson, P. G., Frameshift suppression, in: The Ribosome: Structure, Function, and Evolution pp. 559–570. Eds. W. E. Hill, A. Dahlberg, R. A. Garrett, P. B. Moore, D. Schlessinger and J. R. Warner. American Society for Microbiology, Washington, D.C. 1990.

    Google Scholar 

  12. Dahlberg, A. E., The functional role of ribosomal RNA in protein synthesis. Cell57 (1989) 525–529.

    Article  CAS  PubMed  Google Scholar 

  13. de Duve, C., The second genetic code. Nature333 (1988) 117–118.

    Article  PubMed  Google Scholar 

  14. Eggertsson, G., and Sõll, D., Transfer RNA-mediated suppression of termination codons inEscherichia coli. Microbiol. Rev.52 (1988) 354–374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ehrenberg, M., Rojas, A.-M., Weiser, J., and Kurland, C. G., How many EF-Tu molecules participate in aminoacyl-tRNA binding and peptide bond formation inEscherichia coli translation? J. molec. Biol.211 (1990) 739–749.

    Article  CAS  PubMed  Google Scholar 

  16. Forchhammer, K., Leinfelder, W., and Böck, A., Identification of a novel translation factor necessary for the incorporation of selenocysteine into protein. Nature342 (1989) 543–456.

    Article  Google Scholar 

  17. Fox, T. D., Natural variation in the genetic code. A. Rev. Genet.21 (1987) 67–91.

    Article  CAS  Google Scholar 

  18. Gorini, L., Ribosomal discrimination of tRNAs. Nature, new Biol.234 (1971) 261–264.

    Article  CAS  PubMed  Google Scholar 

  19. Gorini, L., Streptomycin and misreading of the genetic code, in: Ribosomes, pp. 791–803. Eds M. Nomura, A. Tissières and P. Lengyel. Cold Spring Harbor Laboratory Press, New York 1974.

    Google Scholar 

  20. Hadley, K. H., and Murgola, E. J., Isolation of lysine codon suppressors inEscherichia coli. Curr. Microbiol.1 (1978) 99–103.

    Article  CAS  Google Scholar 

  21. Hershey, J. W. B., Protein synthesis, in:Escherichia coli andSalmonella typhimurium Cellular and Molecular Biology, pp. 613–647. Ed. F. C. Neidhardt. American Society for Microbiology, Washington, D.C. 1987.

    Google Scholar 

  22. Hirsh, D., Tryptophan transfer RNA as the UGA suppressor. J. molec. Biol.58 (1971) 439–458.

    Article  CAS  PubMed  Google Scholar 

  23. Hou, Y. M., and Schimmel, P., A simple structural feature is a major determinant of the identity of a transfer RNA. Nature333 (1988) 140–145.

    Article  CAS  PubMed  Google Scholar 

  24. Hughes, D., Mutant forms oftufA andtufB independently suppress nonsense mutations. J. molec. Biol.197 (1987) 611–615.

    Article  CAS  PubMed  Google Scholar 

  25. Hughes, D., Atkins, J. F., and Thompson, S., Mutants of elongation factor Tu promote ribosomal frameshifting and nonsense readthrough. EMBO J.6 (1987) 4235–4239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hüttenhofer, A., Weiss-Brummer, B., Dirheimer, G., and Martin, R. P., A novel type of +1 frameshift suppressor: a base substitution in the anticodon stem of a yeast mitochondrial serine-tRNA causes frameshift suppression. EMBO J.9 (1990) 551–558.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kang, C., and Cantor, C. R., Structure of ribosome-bound messenger RNA as revealed by enzymatic accessibility studies. J. molec. Biol.181 (1985) 241–251.

    Article  CAS  PubMed  Google Scholar 

  28. Keith, G., and Heyman, T., Heterogeneities in vertebrate tRNAsTrp: Avian retroviruses package only as a primer the tRNATrp lacking modified m2G in position 7. Nucl. Acids Res.18 (1990) 703–710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Klubertanz, G. P., Introduction to the Philosophy of Being, pp. 213–235. Appleton-Century-Crofts, New York 1963.

    Google Scholar 

  30. Kurland, C. G., Reading frame errors on ribosomes, in: Nonsense Mutations and tRNA Suppressors, pp. 97–108. Eds J. E. Celis and J. D. Smith. Academic Press, London/New York 1979.

    Google Scholar 

  31. Kurland, C. G., and Ehrenberg M., Optimization of translation accuracy. Prog. nucl. Acid Res. molec. Biol.31 (1984) 191–219.

    Article  CAS  Google Scholar 

  32. Kurland, C. G., and Ehrenberg, M., Constraints on the accuracy of messenger RNA movement. Qu. Rev. Biophys.18 (1985) 423–450.

    Article  CAS  Google Scholar 

  33. Kurland, C. G., Jörgensen, F., Richter, A., Ehrenberg, M., Bilgin, N., and Rojas, A. M., Through the accuracy window, in: The Ribosome: Structure, Function, and Evolution, pp. 513–526. Eds W. E. Hill, A. Dahlberg, R. A. Garrett, P. B. Moore, D. Schlessinger and J. R. Warner. American Society for Microbiology, Washington, D.C. 1990.

    Google Scholar 

  34. Kurland, C. G., Rigler, R., Ehrenberg, M., and Blomberg, C., Allosteric mechanism for codon-dependent RNA selection. Proc. natl Acad. Sci. USA72 (1975) 4248–4251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee, B. J., Worland, P. J., Davis, J., Stadtman, T. C., and Hatfield, D., Identification of a selenocysteryl-tRNASer in mammalian cells which recognizes the nonsense codon, UGA. J. biol. Chem.264 (1989) 9724–9727.

    Article  CAS  PubMed  Google Scholar 

  36. Leinfelder, W., Stadtman, T. C., and Bock, A., Occurrence in vivo of selenocysteyl-tRNASer UCA inEscherichia coli. J. biol. Chem.264 (1989) 9720–9723.

    Article  CAS  PubMed  Google Scholar 

  37. Li, M., and Tzagoloff, A., Assembly of the mitochondrial membrane systems: sequences of yeast mitochondrial valine and an unusual thronine tRNA gene. Cell18 (1979) 47–53.

    Article  CAS  PubMed  Google Scholar 

  38. Liu, J., and Parkinson, J. S., Genetics and sequence analysis of thepcnB locus anEscherichia coli gene involved in plasmid copy number control. J. Bact.171 (1989) 1254–1261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lopilato, J., Bortner, S., and Beckwith, J., Mutations in a new chromosomal gene ofEscherichia coli K-12,pcnB, reduce plasmid copy number of pBR322 and its derivatives. Molec. gen. Genet.205 (1986) 285–290.

    Article  CAS  PubMed  Google Scholar 

  40. McClain, W. H., and Foss, K., Changing the identity of a tRNA by introducing a G-U wobble pair near the 3′-acceptor end. Science240 (1988) 793–796.

    Article  CAS  PubMed  Google Scholar 

  41. Miller, D. L., Elongation factors EF-Tu and EF-G interact at related sites on ribosomes. Proc. natl Acad. Sci. USA69 (1972) 753–755.

    Article  Google Scholar 

  42. Moazed, D., and Noller, H. F., Interaction of tRNA with 23S rRNA in the ribosomal A,P, and E sites. Cell57 (1989) 585–597.

    Article  CAS  PubMed  Google Scholar 

  43. Moazed, D., and Noller, H. F., Intermediate states in the movement of transfer RNA in the ribosome. Nature342 (1989) 142–148.

    Article  CAS  PubMed  Google Scholar 

  44. Moazed, D., and Noller, H. F., Binding of tRNA to the ribosomal A and P sites protects two distinct sets of nucleotides in 16S rRNA. J. molec. Biol.211 (1990) 135–145.

    Article  CAS  PubMed  Google Scholar 

  45. Moazed, D., Robertson, J. M., and Noller, H. F., Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA. Nature334 (1988) 362–364.

    Article  CAS  PubMed  Google Scholar 

  46. Moore, P. B., Elongation remodelled. Nature342 (1989) 127–128.

    Article  CAS  PubMed  Google Scholar 

  47. Muramatsu, T., Nishikawa, K., Nemoto, F., Kuchino, Y., Nishimura, S., Miyazawa, T., and Yokoyama, S., Codon and amino acid specificities of a transfer RNA are both converted by single post-transcriptional modification. Nature336 (1988) 179–181.

    Article  CAS  PubMed  Google Scholar 

  48. Murgola, E. J., tRNA, suppression, and the code. A. Rev. Genet.19 (1985) 57–80.

    Article  CAS  Google Scholar 

  49. Murgola, E. J., Dahlberg, A. E., Hijazi, K. A., and Tiedeman, A. A., Ribosomal RNA and codon recognition: The rRNA-mRNA basepairing model of peptide chain termination in: The Ribosome: Structure, Function, and Evolution, pp. 402–407. Eds W. E. Hill, A. Dahlberg, R. A. Garrett, P. B. Moore, D. Schlessinger and J. R. Warner. American Society for Microbiology, Washington D.C. 1990.

    Google Scholar 

  50. Murgola, E. J., Göringer, H. U., Dahlberg, A. E., and Hijazi, K. A., Ribosomal RNA and UGA-dependent peptide chain termination, in: Molecular Biology of RNA, pp. 221–229. Ed. T. Cech. Liss, New York 1989.

    Google Scholar 

  51. Murgola, E. J., Hijazi, K. A., Göringer, H. U., and Dahlberg, A. E., Mutant 16S ribosomal RNA: A codon-specific translational suppressor. Proc. natl Acad. Sci. USA85 (1988) 4162–4165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Murgola, E. J., and Pagel, F. T., Codon recognition by glycine transfer RNAs ofEscherichia coli in vivo. J. molec. Biol.138 (1980) 833–844.

    Article  CAS  PubMed  Google Scholar 

  53. Murgola, E. J., and Pagel, F. T., Suppressors of lysine codons may be misacylated lysine tRNAs. J. Bact.156 (1983) 917–919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Murgola, E. J., Pagel, F. T., and Hijazi, K. A., Codon context effects in missense suppression. J. molec. Biol.175 (1984) 19–27.

    Article  CAS  PubMed  Google Scholar 

  55. Murgola, E. J., Prather, N. E., Mims, B. H., Pagel, F. T., and Hijazi, K. A., Anticodon shift in tRNA: a novel mechanism in missense and nonsense suppression. Proc. natl Acad. Sci. USA80 (1983) 4936–4939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Normanly, J., and Abelson, J., tRNA identify. A. Rev. Biochem.58 (1989) 1029–1049.

    Article  CAS  Google Scholar 

  57. O'Mahony, D. J., Mims, B. H., Thompson, S., Murgola, E. J., and Atkins, J. F., Glycine tRNA mutants with normal anticodon loop size cause-1 frameshifting. Proc. natl Acad. Sci. USA86 (1989) 7979–7983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pagel, F. T., Mims, B. H., Capra, V., and Murgola, E. J., Influence of a tRNA acceptor stem mutation on misacylation and decoding. 13th International tRNA Workshop, Abstr. (1989) Mo-pm-17.

  59. Parker, J., Errors and alternatives in reading the universal genetic code. Microbiol. Rev.53 (1989) 273–298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Perona, J. J., Swanson, R. N., Rould, M. A., Steitz, T. A., and Söll, D., Structural basis for misaminoacylation by mutantE. coli glutaminyl-tRNA synthetase enzymes. Science246 (1989) 1152–1154.

    Article  CAS  PubMed  Google Scholar 

  61. Perret, V., Garcia, A., Grosjean, H., Ebel, J.-P., Florentz, C., and Giegé, R., Relaxation of a transfer RNA specificity by removal of modified nucleotides. Nature344 (1990) 787–789.

    Article  CAS  PubMed  Google Scholar 

  62. Prather, N. E., Murgola, E. J., and Mims, B. H., Nucleotide insertion in the anticodon loop of a glycine transfer RNA causes missense suppression. Proc. natl Acad. Sci. USA78 (1981) 7408–7411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Prather, N. E., Murgola E. J., and Mims, B. H., Nucleotide substitution in the amino acid acceptor stem of lysine transfer RNA causes missense suppression. J. molec. Biol.172 (1984) 177–184.

    Article  CAS  PubMed  Google Scholar 

  64. Richter, A., and Kurland, C. G., Mutant EF-G that restricts translational frameshifts. J. molec. Biol. (1990) in press.

  65. Robertson, J. M., and Wintermeyer, W., Shielding of the D loop of ribosome bound tRNA by elongation factor G. J. molec. Biol.198 (1987) 133–136.

    Article  CAS  PubMed  Google Scholar 

  66. Schulman, L. H., and Abelson, J., Recent excitement in understanding transfer RNA identity. Science,240 (1988) 1591–1592.

    Article  CAS  PubMed  Google Scholar 

  67. Shine, J., and Dalgarno, L., The 3′-terminal sequence ofEscherichia coli 16S ribosomal RNA: Complementarity to nonsense triplets and ribosome binding sites. Proc. natl Acad. Sci. USA71 (1974) 1342–1346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Smith, D., and Yarus, M., tRNA-tRNA interactions within cellular ribosomes. Proc. natl Acad. Sci. USA86 (1989) 4397–4401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Smrt, J., Kemper, W., Caskey, T., and Nirenberg, M., Template activity of modified terminator codons. J. biol. Chem.245 (1970) 2753–2757.

    Article  CAS  PubMed  Google Scholar 

  70. Sørensen, M. A., and Pedersen, S., Measurements of in vivo translation rates inE. coli. 13th International tRNA Workshop, Abstr. (1989) Mo-am-13.

  71. Steege, D. A., and Söll, D. G., Suppression, in: Biological Regulation and Development, pp. 443–485. Ed. R. F. Goldberger. Plenum, New York 1979.

    Google Scholar 

  72. Strigini, P., and Gorini, L., Ribosomal mutations affecting efficiency of amber suppression. J. molec. Biol.47 (1970) 517–530.

    Article  CAS  PubMed  Google Scholar 

  73. Tapio, S., and Kurland, C. G., Mutant EF-Tu increases missense error in vitro. Molec. gen. Genet.205 (1986) 186–188.

    Article  CAS  PubMed  Google Scholar 

  74. Tate, W. P., Brown, C. M., and Kostner, B., Codon recognition by polypeptide release factor, in The Ribosome: Structure, Function, and Evolution, pp. 393–401. Eds W. E. Hill, A. Dahlberg, R. A. Garrett, P. B. Moore, D. Schlessinger and J. R. Warner. American Society for Microbiology, Washington, D.C. 1990.

    Google Scholar 

  75. Tate, W. P., Ward, C. D., Trotman, C. N. A., Luhrmann, R., and Stöffler, G., The Shine and Dalgarno hypothesis for termination: The 3′ terminus of the 16S rRNA of theEscherichia coli ribosome can be modified or base paired with a complementary oligonucleotide without affecting termination in vitro. Biochem. Int.7 (1983) 529–543.

    CAS  PubMed  Google Scholar 

  76. Thomas, L. K., Dix, D. B., and Thompson, R. C., Codon choice and gene expression: Synonymous codons differ in their ability to direct aminoacylated-transfer RNA binding to ribosomes in vitro. Proc. natl Acad. Sci. USA85 (1988) 4242–4246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tucker, S. D., Murgola, E. J., and Pagel, F. T., Missense and nonsense suppressors can correct frameshift mutations. Biochimie71 (1989) 729–739.

    Article  CAS  PubMed  Google Scholar 

  78. Vijgenboom, E., Vink, T., Kraal, B., and Borsch, L., Mutants of the elongation factor EF-Tu, a new class of nonsense suppressors. EMBO J.4 (1985) 1049–1052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Watson, J., and Crick, F. H. C., Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature171 (1953) 737–738.

    Article  CAS  PubMed  Google Scholar 

  80. Yanofsky, C., Helinski, D. R., and Maling, B. D., The effects of mutation on the composition and properties of the A protein ofEscherichia coli tryptophan synthetase. Cold Spring Harbor Symp. quant. Biol.26 (1961) 11–24.

    Article  CAS  PubMed  Google Scholar 

  81. Yanofsky, C., and St. Lawrence, P., Gene action. A. Rev. Microbiol.14 (1960) 322–340.

    Article  Google Scholar 

  82. Yarus, M., Translational efficiency of transfer RNA's: Uses of an extended anticodon. Science218 (1982) 646–652.

    Article  CAS  PubMed  Google Scholar 

  83. Yarus, M., tRNA Identity: A hair of the dogma that bit us. Cell55 (1988) 739–741.

    Article  CAS  PubMed  Google Scholar 

  84. Yarus, M., Cline, S. W., Wier, P., Breeden, L., and Thompson, R. C., Actions of the anticodon arm in translation on the phenotypes of RNA mutants. J. molec. Biol.192 (1986) 235–255.

    Article  CAS  PubMed  Google Scholar 

  85. Zamecnik, P. C., On protein synthesis. Cold Spring Harbor Symp. quant. Biol.34 (1969) 1–16.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murgola, E.J. Suppression and the code: Beyond codons and anticodons. Experientia 46, 1134–1141 (1990). https://doi.org/10.1007/BF01936923

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01936923

Key words

Navigation