Skip to main content
Log in

Role of Beta-adrenergic Receptors and Sirtuin Signaling in the Heart During Aging, Heart Failure, and Adaptation to Stress

  • Review Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In the heart, catecholamine effects occur by activation of beta-adrenergic receptors (β-ARs), mainly the beta 1 (β1-AR) and beta 2 (β2-AR) subtypes, both of which couple to the Gs protein that activates the adenylyl cyclase signaling pathway. The β2-ARs can also couple to the Gi protein that counterbalances the effect of the Gs protein on cyclic adenosine monophosphate production and activates the phosphatidylinositol 3-kinase (PI3K)–Akt signaling pathway. In several cardiovascular disorders, including heart failure, as well as in aging and in animal models of environmental stress, a reduction in the β12-AR ratio and activation of the β2-AR-Gi-PI3K–Akt signaling pathway have been observed. Recent studies have shown that sirtuins modulate certain organic processes, including the cellular stress response, through activation of the PI3K–Akt signaling pathway and of downstream molecules such as p53, Akt, HIF1-α, and nuclear factor-kappa B. In the heart, SIRT1, SIRT3, and β2-ARs are crucial to the regulation of the cardiomyocyte energy metabolism, oxidative stress, reactive oxygen species production, and autophagy. SIRT1 and the β2-AR-Gi complex also control signaling pathways of cell survival and death. Here, we review the role played by β2-ARs and sirtuins during aging, heart failure, and adaptation to stress, focusing on the putative interplay between the two. That relationship, if proven, merits further investigation in the context of cardiac function and dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adiga IK, Nair RR (2008) Multiple signaling pathways coordinately mediate reactive oxygen species dependent cardiomyocyte hypertrophy. Cell Biochem Funct 26(3):346–351

    Article  CAS  PubMed  Google Scholar 

  • Alcendor RR, Kirshenbaum LA, Imai S, Vatner SF, Sadoshima J (2004) Silent information regulator 2alpha, a longevity factor and class III histone deacetylase, is an essential endogenous apoptosis inhibitor in cardiac myocytes. Circ Res 95(10):971–980

    Article  CAS  PubMed  Google Scholar 

  • Alcendor RR, Gao S, Zhai P, Zablocki D, Holle E, Yu X, Tian B, Wagner T, Vatner SF, Sadoshima J (2007) Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res 100(10):1512–1521

    Article  CAS  PubMed  Google Scholar 

  • Aranguiz-Urroz P, Canales J, Copaja M, Troncoso R, Vicencio JM, Carrillo C, Lara H, Lavandero S, Diaz-Araya G (2011) Beta(2)-adrenergic receptor regulates cardiac fibroblast autophagy and collagen degradation. Biochem Biophys Acta 1812(1):23–31

    CAS  PubMed  Google Scholar 

  • Axelrod J, Reisine TD (1984) Stress hormones: their interaction and regulation. Science 224(4648):452–459

    Article  CAS  PubMed  Google Scholar 

  • Baker AJ (2014) Adrenergic signaling in heart failure: a balance of toxic and protective effects. Pflugers Arch 466:1139–1150

    Article  CAS  PubMed  Google Scholar 

  • Bassani RA, Bassani JW (1993) Effects of escapable and inescapable foot-shock on rat atrial beta-adrenoceptors. Pharmacol Biochem Behav 44(4):869–875

    Article  CAS  PubMed  Google Scholar 

  • Benes J, Novakova M, Rotkova J, Farrar V, Kvetnansky R, Riljak V, Myslivecek J (2012) Beta3 adrenoceptors substitute the role of M (2) muscarinic receptor in coping with cold stress in the heart: evidence from M(2)KO mice. Cell Mol Neurobiol 32(5):859–869

    Article  CAS  PubMed  Google Scholar 

  • Berndt C, Lillig CH, Holmgren A (2007) Thiol-based mechanisms of the thioredoxin and glutaredoxin systems: implications for diseases in the cardiovascular system. Am J Physiol Heart Circ Physiol 292(3):H1227–H1236

    Article  CAS  PubMed  Google Scholar 

  • Bing RJ, Siegel A, Ungar I et al (1954) Metabolism of the human heart. II. Studies on fat, ketone and amino acid metabolism. Am J Med 16(4):504–515

    Article  CAS  PubMed  Google Scholar 

  • Blander G, Guarente L (2004) The Sir2 family of protein deacetylases. Annu Rev Biochem 73:417–435

    Article  CAS  PubMed  Google Scholar 

  • Bohm M, Lohse MJ (1994) Quantification of beta-adrenoceptors and beta-adrenoceptor kinase on protein and mRNA levels in heart failure. Eur Heart J 15(Suppl D):30–34

    Article  PubMed  Google Scholar 

  • Bos JL (2006) Epac proteins: multi-purpose cAMP targets. Trends Biochem Sci 31:680–686

    Article  CAS  PubMed  Google Scholar 

  • Bristow MR, Ginsburg R, Minobe W, Cubicciotti RS, Sageman WS, Lurie K, Billing-ham ME, Harrison DC, Stinson EB (1982) Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med 307(4):205–211

    Article  CAS  PubMed  Google Scholar 

  • Bristow MR, Hershberger RE, Port JD, Minobe W, Rasmussen R (1989) Beta 1- and beta 2-adrenergic receptor-mediated adenylate cyclase stimulation in nonfailing and failing human ventricular myocardium. Mol Pharmacol 35(3):295–303

    CAS  PubMed  Google Scholar 

  • Bristow MR, Minobe WA, Raynolds MV, Port JD, Rasmussen R, Ray PE, Feldman AM (1993) Reduced beta 1 receptor messenger RNA abundance in the failing human heart. J Clin Invest 92(6):2737–2745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodde OE (1991) Beta 1- and beta 2-adrenoceptors in the human heart: properties, function, and alterations in chronic heart failure. Pharmacol Rev 43(2):203–242

    CAS  PubMed  Google Scholar 

  • Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, Hu LS, Cheng HL, Jedrychowski MP, Gygi SP, Sinclair DA, Alt FW, Greenberg ME (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303(5666):2011–2015

    Article  CAS  PubMed  Google Scholar 

  • Cai J, Yi FF, Bian ZY et al (2009) Crocetin protects against cardiac hypertrophy by blocking MEK-ERK1/2 signalling pathway. J Cell Mol Med 13(5):909–925

    Article  CAS  PubMed  Google Scholar 

  • Cannavo A, Liccardo D, Lymperopoulos A, Santangelo M, Femminella G, Leosco D, Cittadini A, Ferrara N, Paolocci N, Koch WJ, Rengo G (2017) GRK2 regulates α2-adrenergic receptor-dependent catecholamines release in human adrenal chromaffin cells. JACC 69(11):1513–1519

    Article  CAS  Google Scholar 

  • Cerbai E, Guerra L, Varani K, Barbieri M, Borea PA, Mugelli A (1995) Beta-adrenoceptor subtypes in young and old rat ventricular myocytes: a combined patch-clamp and binding study. Br J Pharmacol 116(2):1835–1842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chao LC, Tontonoz P (2012) SIRT1 regulation—it ain’t all NAD. Mol Cell 45:9–11

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Liu J, Li N et al (2015) Mouse SIRT3 attenuates hypertrophy-related lipid accumulation in the heart through the deacetylation of LCAD. PLoS ONE 10(3):e0118909

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Corbi G, Conti V, Scapagnini G, Filippelli A, Ferrara N (2012) Role of sirtuins, calorie restriction and physical activity in aging. Front Biosci (Elite Ed) 4:768–778

    Article  Google Scholar 

  • Corbi G, Conti V, Russomanno G, Longobardi G, Furgi G, Filippelli A, Ferrara N (2013) Adrenergic signaling and oxidative stress: a role for sirtuins? Front Physiol 4:1–14

    Article  Google Scholar 

  • Daaka Y, Luttrell LM, Lefkowitz RJ (1997) Switching of the coupling of the beta2-adrenergic receptor to different G proteins by protein kinase A. Nature 390(6655):88–91

    Article  CAS  PubMed  Google Scholar 

  • Daitoku H, Hatta M, Matsuzaki H et al (2004) Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity. PNAS 101(27):10042–10047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dodge-Kafka KL, Soughayer J, Pare GC, Carlisle Michel JJ, Langeberg LK, Kapiloff MS, Scott JD (2005) The protein kinase A anchoring protein mAKAP coordinates two integrated cAMP effector pathways. Nature 437(7058):574–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du J, Zhou Y, Su X, Yu JJ, Khan S, Jiang H, Kim J, Woo J, Kim JH, Choi BH, He B, Chen W, Zhang S, Cerione RA, Auwerx J, Hao Q, Lin H (2011) Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 334(6057):806–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faulx MD, Ernsberger P, Vatner D, Hoffman RD, Lewis W, Strachan R, Hoit BD (2005) Strain-dependent beta-adrenergic receptor function influences myocardial responses to isoproterenol stimulation in mice. Am J Physiol Heart Circ Physiol 289(1):H30–36

    Article  CAS  PubMed  Google Scholar 

  • Feldman AM, Cates AE, Veazey WB, Hershberger RE, Bristow MR, Baughman KL, Baumgartner WA, Van Dop C (1988) Increase of the 40,000-mol wt pertussis toxin substrate (G protein) in the failing human heart. J Clin Invest 82(1):189–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrara N, O’Gara P, Wynne DG, Brown LA, del Monte F, Poole-Wilson PA, Harding SE (1995) Decreased contractile responses to isoproterenol in isolated cardiac myocytes from aging guinea-pigs. J Mol Cel Cardiol 27(5):1141–1150

    Article  CAS  Google Scholar 

  • Ferrara N, Bohm M, Zolk O, O’Gara P, Harding SE (1997) The role of Gi-proteins and beta-adrenoceptors in the age-related decline of contraction in guinea-pig ventricular myocytes. J Mol Cel Cardiol 29(2):439–448

    Article  CAS  Google Scholar 

  • Ferrara N, Komici K, Corbi G, Pagano G, Furgi G, Rengo C, Femminella GD, Leosco D, Bonaduce D (2014) Beta-adrenergic receptor responsiveness in aging heart and clinical implications. Front Physiol 4:1–10

    Article  Google Scholar 

  • Finley LW, Carracedo A, Lee J, Souza A, Egia A, Zhang J et al (2011) SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization. Cancer Cell 19:416–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frescas D, Valenti L, Accili D (2005) Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes. J Biol Chem 280(21):20589–20595

    Article  CAS  PubMed  Google Scholar 

  • Frye RA (2000) Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 273(2):793–798

    Article  CAS  PubMed  Google Scholar 

  • Gerhart-Hines Z, Dominy Jr JE, Blattler SM, Jedrychowski MP, Banks AS, Lim J, Chim H, Gygi SP, Pulgserver P (2011) The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD(+). Mol Cell 44:851–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilsbach R, Hein L (2012) Are the pharmacology and physiology of α 2- adrenoceptors determined by α2- heteroreceptors and auto receptors respectively? Br J Pharm 165:90–102

    Article  CAS  Google Scholar 

  • Gudbjarnason S, Benediktsdottir VE (1996) Regulation of beta-adrenoceptor properties and the lipid milieu in heart muscle membranes during stress. Mol Cel Biochem 163(1):137–143

    Article  Google Scholar 

  • Guo J, Gertsberg Z, Ozgen N (2009) p66Shc links α1-adrenergic receptors to a reactive oxygen species-dependent AKT-FOXO3A phosphorylation pathway in cardiomyocytes. Circ Res 104(5):660–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hafner AV, Dai J, Gomes AP et al (2010) Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging (Albany NY) 2(12):914–923

    Article  CAS  Google Scholar 

  • Hariharan N, Maejima Y, Nakae J, Paik J, Depinho RA, Sadoshima J (2010) Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circ Res 107(12):1470–1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houtkooper RH, Pirinen E, Auwerx J (2012) Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 13(4):225–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu CP, Zhai P, Yamamoto T, Maejima Y, Matsushima S, Hariharan N, Shao D, Takagi H, Oka S, Sadoshima J (2010) Silent information regulator 1 protects the heart from ischemia/reperfusion. Circulation 122(21):2170–2182

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang H, Tindall DJ (2007) Dynamic FoxO transcription factors. J Cell Sci 120(Pt 15):2479–2487

    Article  CAS  PubMed  Google Scholar 

  • Hunt SA, Abraham WT, Chin MH, Feldman AM, Francis GS, Ganiats TG, Jessup M, Konstam MA, Mancini DM, Michl K, Oates JA, Rah PS, Silver MA, Stevenson LW, Yancy CW (2009) Focused update incorporated into the ACC/AHA 205 guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines: developed in collaboration with the International Socitt for Heart and Lung Transplantation. J Am Coll Cardiol 53:e1–e90

    Article  PubMed  Google Scholar 

  • Imai S, Armstrong CM, Kaeberlein M, Guarente L (2000) Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403(6771):795–800

    Article  CAS  PubMed  Google Scholar 

  • Kaabachi O, Ouezini R, Koubaa W, Ghrab B, Zargouni A, Ben Abdelaziz A (2009) Tramadol as an adjuvant to lidocaine for axillary brachial plexus block. Anesth Analg 108(1):367–370

    Article  CAS  PubMed  Google Scholar 

  • Koentges C, Pfeil K, Schnick T et al (2015) SIRT3 deficiency impairs mitochondrial and contractile function in the heart. Basic Res Cardiol 110(4):36

    Article  PubMed  CAS  Google Scholar 

  • Koentges C, Bode C, Bugger H (2016) SIRT3 in cardiac physiology and disease. Front Cardiovasc Med 3(38):1–8

    Google Scholar 

  • Laukova M, Vargovic P, Vlcek M, Lejavova K, Hudecova S, Krizanova O, Kvetnansky R (2013) Catecholamine production is differently regulated in splenic T- and B-cells following stress exposure. Immunobiology 218(5):780–789

    Article  CAS  PubMed  Google Scholar 

  • Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE, Tsokos M, Alt FW, Finkel T (2008) A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Nat Acad Sci USA 105(9):3374–3379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leineweber K, Klapproth S, Beilfuss A, Silber RE, Heusch G, Philipp T, Brodde OE (2003) Unchanged G-protein-coupled receptor kinase activity in the aging human heart. J Am Coll Cardiol 42(8):1487–1492

    Article  CAS  PubMed  Google Scholar 

  • Levine S (2005) Developmental determinants of sensitivity and resistance to stress. Psychoneuroendocrinology 30(10):939–946

    Article  PubMed  Google Scholar 

  • Li HL, Huang Y, Zhang CN et al (2006) Epigallocathechin-3 gallate inhibits cardiac hypertrophy through blocking reactive oxidative species-dependent and -independent signal pathways. Free Radic Biol Med 40(10):1756–1775

    Article  CAS  PubMed  Google Scholar 

  • Liggett SB, Cresci S, Kelly RJ, Syed FM, Matkovich SJ, Hahn HS, Diwan A, Martini JS, Sparks L, Parekh RR, Spertus JA, Koch WJ, Kardia SL, Dorn GW 2nd (2008) A GRK5 polymorphism that inhibits beta-adrenergic receptor signaling is protective in heart failure. Nat Med 14(5):510–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lokuta AJ, Maertz NA, Meethal SV, Potter KT, Kamp TJ, Valdivia HH, Haworth RA (2005) Increased nitration of sarcoplasmic reticulum Ca2+-ATPase in human heart failure. Circulation 111(8):988–995

    Article  CAS  PubMed  Google Scholar 

  • Lymperopoulos A, Rengo G, Funakishi H, Eckhart AD, Koch WJ (2007) Adrenal GRK2 upregulation mediates sympathetic overdrive in heart failure. Nat Med 13:315–323

    Article  CAS  PubMed  Google Scholar 

  • Lymperopoulos A, Rengo G, Gao E, Ebert SN, Dorn GW, Koch WJ (2010) Reduction of sympathetic activity via adrenal-targeted GRK2 gene deletion attenuates heart failure progression and improves cardiac function after myocardial infarction. J Biol Chem 285(21):16378–16386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, Burden SJ, Di Lisi R, Sandri C, Zhao J, Goldberg AL, Schiaffino S, Sandri M (2007) FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6(6):458–471

    Article  CAS  PubMed  Google Scholar 

  • Mann DL, Bristow MR (2005) Mechanisms and models in heart failure: the biomechanical model and beyond. Circulation 111:2837–2849

    Article  PubMed  Google Scholar 

  • McEwen BS (2000) The neurobiology of stress: from serendipity to clinical relevance. Brain Res 886(1–2):172–189

    Article  CAS  PubMed  Google Scholar 

  • Molenaar P, Christ T, Hussain RI, Engel A, Berk E, Gillette KT, Chen L, Galindo-Tovar A, Krobert KA, Ravens U, Levy FO, Kaumann AJ (2013) PDE3, but not PDE4, reduces beta (1) - and beta(2)-adrenoceptor-mediated inotropic and lusitropic effects in failing ventricle from metoprolol-treated patients. Brit J Pharmacol 169(3):528–538

    Article  CAS  Google Scholar 

  • Moura AL, Hyslop S, Grassi-Kassisse DM, Spadari RC (2017) Functional beta 2 adrenoceptors in rat left atria: effect of foot-shock stress. Can J Physiol Pharmacol (in press)

  • Myagmar B-E, Flynn JM, Cowley FM, Swigart PM, Montgomery MD, Thai K, Nair D, Gupta R, Deng DX, Hosoda C, Melov S, Baker AJ, Simpson PC (2017) Adrenergic receptors in individual ventricular myocytes: the beta-1 and alpha-1B are in all cells, the alpha-1A is in a subpopulation, and the beta-2 and beta-3 are almost absent. Circ Res 120:1103–1115

    Article  CAS  PubMed  Google Scholar 

  • Myslivecek J, Ricny J, Palkovits M, Kvetnansky R (2004) The effects of short-term immobilization stress on muscarinic receptors, beta-adrenoceptors, and adenylyl cyclase in different heart regions. Annals NY Acad Sci 1018:315–322

    Article  CAS  Google Scholar 

  • Myslivecek J, Tillinger A, Novakova M, Kvetnansky R (2008) Regulation of adrenoceptor and muscarinic receptor gene expression after single and repeated stress. Annals NY Acad Sci 1148:367–376

    Article  CAS  Google Scholar 

  • Nakou ES, Parthenakis FI, Kallergis EM, Marketou ME, Nakos KS, Vardas PE (2016) Healthy aging and myocardium: a complicated process with various effects in cardiac structure and physiology. Int J Cardiol 209:167–175

    Article  CAS  PubMed  Google Scholar 

  • Nikolaev VO, Moshkov A, Lyon AR, Miragoli M, Novak P, Paur H et al (2010) β2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation. Science 327:1653–1657

    Article  CAS  PubMed  Google Scholar 

  • O’Hayre M, Eichel K, Avino S, Zhao X, Steffen DJ, Feng X, Kawakami K, Aoki J, Messer K, Sunahara R, Inoue A, von Zastrow M, Gutkind JS (2017) Genetic evidence that β-arrestins are dispensable for the initiation of β2-adrenergic receptor signaling o ERK. Sci Signal 10: eaal3395

  • Penna LB, Bassani RA (2010) Increased spontaneous activity and reduced inotropic response to catecholamines in ventricular myocytes from footshock-stressed rats. Stress 13(1):73–82

    Article  CAS  PubMed  Google Scholar 

  • Pereira L, Cheng H, Lao DH, Na L, van Oort RJ, Brown JH, Wehrens XH, Chen J, Bers DM (2013) Epac2 mediates cardiac beta1-adrenergic-dependent sarcoplasmic reticulum Ca2+ leak and arrhythmia. Circulation 127:913–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pillai JB, Isbatan A, Imai S, Gupta MP (2005) Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2alpha deacetylase activity. J Biol Chem 280(52):43121–43130

    Article  CAS  PubMed  Google Scholar 

  • Rockman HA, Chien KR, Choi DJ, Iaccarino G, Hunter JJ, Ross J Jr, Lefkowitz RJ, Koch WJ (1998) Expression of a beta-adrenergic receptor kinase 1 inhibitor prevents the development of myocardial failure in gene-targeted mice. Proc Nat Acad Sci USA 95(12):7000–7005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434(7029):113–118

    Article  CAS  PubMed  Google Scholar 

  • Santos IN, Spadari-Bratfisch RC (2006) Stress and cardiac beta adrenoceptors. Stress 9(2):69–84

    Article  CAS  PubMed  Google Scholar 

  • Sato M, Gong H, Terracciano CM, Ranu H, Harding SE (2004) Loss of beta-adrenoceptor response in myocytes overexpressing the Na+/Ca(2+)-exchanger. J Mol Cell Cardiol 36(1):43–48

    Article  CAS  PubMed  Google Scholar 

  • Sawyer DB, Siwik DA, Xiao L, Pimentel DR, Singh K, Colucci WS (2002) Role of oxidative stress in myocardial hypertrophy and failure. J Mol Cell Cardiol 34:379–388

    Article  CAS  PubMed  Google Scholar 

  • Sciarretta S, Hariharan N, Monden Y, Zablocki D, Sadoshima J (2011) Is autophagy in response to ischemia and reperfusion protective or detrimental for the heart? Pediatr Cardiol 32(3):275–281

    Article  PubMed  Google Scholar 

  • Seddon M, Looi YH, Shah AM (2007) Oxidative stress and redox signalling in cardiac hypertrophy and heart failure. Heart 93:903–907

    Article  CAS  PubMed  Google Scholar 

  • Selye HA (1936) A syndrome produced by diverse noxious agents. J Neurons Clin Neurosci 10(2):230–231

    Article  Google Scholar 

  • Shioi T, Kang PM, Douglas PS, Hampe J, Yballe CM, Lawitts J, Cantley LC, Izumo S (2000) The conserved phosphoinositide 3-kinase pathway determines heart size in mice. EMBO J 19(11):2537–2548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sormekawa S, Fukuhara S, Nakaoka Y, Fujita H, Saito Y, Mochizuki N (2005) Enhanced functional gap junction neoformation by protein kinase A-dependent and Epac-dependent signals downstream of cAMP in cardiac myocytes. Circ Res 97:655–662

    Article  CAS  Google Scholar 

  • Spadari-Bratfisch RC, dos Santos IN (2008) Adrenoceptors and adaptive mechanisms in the heart during stress. Ann NY Acad Sci 1148:377–383

    Article  CAS  PubMed  Google Scholar 

  • Stanley WC, Chandler MP (2002) Energy metabolism in the normal and failing heart: potential for therapeutic interventions. Heart Fail Rev 7(2):115–130

    Article  CAS  PubMed  Google Scholar 

  • Stanley BA, Sivakumaran V, Shi S, McDonald I, Lloyd D, Watson WH, Aon MA, Paolocci N (2011) Thioredoxin reductase-2 is essential for keeping low levels of H2O2 emission from isolated heart mitochondria. J Biol Chem 286(38):33669–33677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP (2009) Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest 119(9):2758–2771

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sundaresan NR, Vasudevan P, Zhong L, Kim G, Samant S, Parekh V, Pillai VB, Ravindra PV, Gupta M, Jeevanandam V, Cunningham JM, Deng CX, Lombard DB, Mostoslavsky R, Gupta MP (2012) The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nat Med 18(11):1643–1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan WQ, Wang K, Lv DY et al (2008) Foxo3a inhibits cardiomyocyte hypertrophy through transactivating catalase. J Biol Chem 283(44):29730–29739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanno M, Nakamoto J, Miura T, Shimamoto K, Horio Y (2007) Nucleocytoplasmic shuttling of the NAD + dependent histone deacetylase SIRT1. J Biol Chem 282:6823–6832

    Article  CAS  PubMed  Google Scholar 

  • Tanno M, Kuno A, Yano T, Miura T, Hisahara S, Ishikawa S et al (2010) Induction of manganese superoxide dismutase by nuclear translocation and activation of SIRT1 promotes cell survival in chronic heart failure. J Biol Chem 285:8375–8382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanno M, Kuno A, Horio Y, Miura T (2012) Emerging beneficial roles of sirtuins in heart failure. Basic Res Cardiol 107(4):273–287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tillinger A, Myslivecek J, Novakova M, Krizanova O, Kvetnansky R (2008) Gene expression of adrenoceptors in the hearts of cold-acclimated rats exposed to a novel stressor. Ann NY Acad Sci 1148:393–399

    Article  CAS  PubMed  Google Scholar 

  • Tillinger A, Novakova M, Krizanova O, Kvetnansky R, Myslivecek J (2014) Heart ventricles specific stress-induced changes in beta-adrenoceptors and muscarinic receptors. Gen Physiol Biophys 33(3):357–364

    Article  CAS  PubMed  Google Scholar 

  • Tong C, Morrison A, Mattison S, Qian S, Bryniarski M, Rankin B, Wang J, Thomas DP, Li J (2013) Impaired SIRT1 nucleocytoplasmic shuttling in the senescent heart during ischemic stress. FASEB J 27(11):4332–4342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tseng AH, Shieh SS, Wang DL (2013) SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage. Free Radic Biol Med 63:222–234

    Article  CAS  PubMed  Google Scholar 

  • Ungerer M, Bohm M, Elce JS, Erdmann E, Lohse MJ (1993) Altered expression of beta-adrenergic receptor kinase and beta 1-adrenergic receptors in the failing human heart. Circulation 87(2):454–463

    Article  CAS  PubMed  Google Scholar 

  • Vakhrusheva O, Smolka C, Gajawada P, Kostin S, Boettger T, Kubin T, Braun T, Bober E (2008) Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ Res 102(6):703–710

    Article  CAS  PubMed  Google Scholar 

  • van der Horst A, Tertoolen LG, de Vries-Smits LM, Frye RA, Medema RH, Burgering BM (2004) FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1). J Biol Chem 279(28):28873–28879

    Article  PubMed  CAS  Google Scholar 

  • Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P, Reinberg D (2004) Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell 16(1):93–105

    Article  CAS  PubMed  Google Scholar 

  • Vaquero A, Sternglanz R, Reinberg D (2007) NAD + -dependent deacetylation of H4 lysine 16 by class III HDACs. Oncogene 26(37):5505–5520

    Article  CAS  PubMed  Google Scholar 

  • Varma SD (1991) Devamanoharan PS hydrogen peroxide in human blood. Free Radic Res Commun 14:125–131

    Article  CAS  PubMed  Google Scholar 

  • Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK, Guarente L, Weinberg RA (2001) hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107(2):149–159

    Article  CAS  PubMed  Google Scholar 

  • Villalba JM, Alcain FJ (2012) Sirtuin activators and inhibitors. BioFactors 38(5):349–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wanschel AC, Caceres VM, Moretti AI, Bruni-Cardoso A, de Carvalho HF, de Souza HP, Laurindo FR, Spadari RC, Krieger MH (2014) Cardioprotective mechanism of S-nitroso-N-acetylcysteine via S-nitrosated betadrenoceptor-2 in the LDLr-/- mice. Nitric Oxide 36:58–66

    Article  CAS  PubMed  Google Scholar 

  • Wei H, Ahn S, Shenoy SK, Karnik SS, Hunyady L, Luttrell LM, Lefkowitz RJ (2003) Independent beta-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. Proc Natl Acad Sci USA 100:10782–10787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White M, Roden R, Minobe W, Khan MF, Larrabee P, Wollmering M, Port JD, Anderson F, Campbell D, Feldman AM (1994) Age-related changes in beta-adrenergic neuroeffector systems in the human heart. Circulation 90 (3):1225–1238

    Article  CAS  PubMed  Google Scholar 

  • Woo AY, Xiao RP (2012) Beta-Adrenergic receptor subtype signaling in heart: from bench to bedside. Acta Pharmacol Sin 33(3):335–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo AY, Song Y, Xiao RP, Zhu W (2015) Biased β2-adrenoceptor signalling in heart failure: pathophysiology and drug discovery. Br J Pharmacol 172:5444–5456

    Article  CAS  PubMed  Google Scholar 

  • Xiao RP, Balke CW (2004) Na +/Ca2 + exchange linking beta2-adrenergic G(i) signaling to heart failure: associated defect of adrenergic contractile support. J Mol Cel Cardiol 36(1):7–11

    Article  CAS  Google Scholar 

  • Xiao RP, Ji X, Lakatta EG (1995) Functional coupling of the beta 2-adrenoceptor to a pertussis toxin-sensitive G protein in cardiac myocytes. Mol Pharmacol 47(2):322–329

    CAS  PubMed  Google Scholar 

  • Xiao RP, Tomhave ED, Wang DJ, Ji X, Boluyt MO, Cheng H, Lakatta EG, Koch WJ (1998) Age-associated reductions in cardiac beta1- and beta2-adrenergic responses without changes in inhibitory G proteins or receptor kinases. J Clin Invest 101(6):1273–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Q, Dalic A, Fang L, Kiriazis H, Ritchie RH, Sim K, Gao X-M, Drummond G, Sarwar M, Zhang Y-Y, Dart AM, Du X-J (2011) Myocardial oxidative stress contributes to transgenic β2-adrenoceptor activation-induced cardiomyopathy and heart failure. Br J Pharmacol 162:1012–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue Z, Ma Y, You J et al (2016) NMNAT3 is involved in the protective effect of SIRT3 in Ang II-induced cardiac hypertrophy. Exp Cell Res 347(2):261–273

    Article  CAS  PubMed  Google Scholar 

  • Zeng H, Vaka VR, He X et al (2015) High-fat diet induces cardiac remodelling and dysfunction: assessment of the role played by SIRT3 loss. J Cell Mol Med 19(8):1847–1856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang XP, Vatner SF, Shen YT, Rossi F, Tian Y, Peppas A, Resuello R, Natividad FF, Vatner D (2007) Increased apoptosis and myocyte enlargement with decreased cardiac mass, distinctive features of the aging male, but not female, monkey heart. J Mol Cell Cardiol 43(4):487–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Zhang Z, Guo H et al (2008) Na+/K+-ATPase-mediated signal transduction and Na+/K+-ATPase regulation. Fundam Clin Pharmacol 22(6):615–621

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, D’Urso A, Toiber D, Sebastian C, Henry RE, Vadysirisack DD, Guimaraes A, Marinelli B, Wikstrom JD, Nir T, Clish CB, Vaitheesvaran B, Iliopoulos O, Kurland I, Dor Y, Weissleder R, Shirihai OS, Ellisen LW, Espinosa JM, Mostoslavsky R (2010) The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell 140(2):280–293

    Article  CAS  Google Scholar 

  • Zhang W, Yano N, Deng M, Mao Q, Shaw SK, Tseng YT (2011) Beta-adrenergic receptor-PI3 K signaling crosstalk in mouse heart elucidation of immediate downstream signaling cascades. PLoS ONE 6(10):e26581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu WZ, Zheng M, Koch WJ, Lefkowitz RJ, Kobilka BK, Xiao RP (2001) Dual modulation of cell survival and cell death by β2-adrenergic signaling in adult mouse cardiac myocytes. Proc Nat Acad Sci USA 98(4):1607–1612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu WZ, Wang SQ, Chakir K, Yang D, Zhang T, Brown JH, Devic E, Kobilka BK, Cheng H, Xiao RP (2003) Linkage of beta1-adrenergic stimulation to apoptotic heart cell death through protein kinase A-independent activation of Ca2+/calmodulin kinase II. J Clin Invest 111(5):617–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu W, Zeng X, Zheng M, Xiao RP (2005) The enigma of beta2-adrenergic receptor Gi signaling in the heart: the good, the bad, and the ugly. Circ Res 97(6):507–509

    Article  CAS  PubMed  Google Scholar 

  • Zhu W, Petrashevskaya N, Ren S, Zhao A, Chakir K, Gao E, Chuprun JK, Wang Y, Talan M, Dorn GW 2nd, Lakatta EG, Feldman Koch WJ, Xiao RP AM (2012) Gi-biased beta2AR signaling links GRK2 upregulation to heart failure. Circ Res 110(2):265–274

    Article  CAS  PubMed  Google Scholar 

  • Zou XJ, Yang L, Yao SL (2008) Propofol depresses angiotensin II-induced cardiomyocyte hypertrophy in vitro. Exp Biol Med (Maywood) 233(2):200–208

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, São Paulo Research Foundation; Grants 2012/21990-6 and 2016/20777-8), the Fundação de Amparo à Pesquisa do Espírito Santo (FAPES, Foundation for the Support of Research in the State of Espírito Santo; Grant 74087886), and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, National Council for Scientific and Technological Development; Grant 424114/2016-0).

Author information

Authors and Affiliations

Authors

Contributions

RCS was responsible for the manuscript concept and design, coordinated the editorial plan, and contributed to manuscript writing and final edition. CC contributed to the manuscript concept and writing, and took part in manuscript's final edition. PFV contributed to the manuscript writing and edition. DO and ALM contributed to the literature search and selection. All authors critically reviewed content and approved the final version of this publication.

Corresponding author

Correspondence to Regina Celia Spadari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spadari, R.C., Cavadas, C., de Carvalho, A.E.T.S. et al. Role of Beta-adrenergic Receptors and Sirtuin Signaling in the Heart During Aging, Heart Failure, and Adaptation to Stress. Cell Mol Neurobiol 38, 109–120 (2018). https://doi.org/10.1007/s10571-017-0557-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-017-0557-2

Keywords

Navigation