Skip to main content

Advertisement

Log in

Molecular regulation of CRAC channels and their role in lymphocyte function

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Calcium (Ca2+) influx is required for the activation and function of all cells in the immune system. It is mediated mainly by store-operated Ca2+ entry (SOCE) through Ca2+ release-activated Ca2+ (CRAC) channels located in the plasma membrane. CRAC channels are composed of ORAI proteins that form the channel pore and are activated by stromal interaction molecules (STIM) 1 and 2. Located in the membrane of the endoplasmic reticulum, STIM1 and STIM2 have the dual function of sensing the intraluminal Ca2+ concentration in the ER and to activate CRAC channels. A decrease in the ER’s Ca2+ concentration induces STIM multimerization and translocation into puncta close to the plasma membrane where they bind to and activate ORAI channels. Since the identification of ORAI and STIM genes as the principal mediators of CRAC channel function, substantial advances have been achieved in understanding the molecular regulation and physiological role of CRAC channels in cells of the immune system and other organs. In this review, we discuss the mechanisms that regulate CRAC channel function and SOCE, the role of recently identified proteins and mechanisms that modulate the activation of ORAI/STIM proteins and the consequences of CRAC channel dysregulation for lymphocyte function and immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Putney JW Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium 7:1–12

    Article  PubMed  CAS  Google Scholar 

  2. Penner R, Matthews G, Neher E (1988) Regulation of calcium influx by second messengers in rat mast cells. Nature 334:499–504

    Article  PubMed  CAS  Google Scholar 

  3. Lewis RS, Cahalan MD (1989) Mitogen-induced oscillations of cytosolic Ca2+ and transmembrane Ca2+ current in human leukemic T cells. Cell Regul 1:99–112

    PubMed  CAS  Google Scholar 

  4. Hoth M, Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355:353–356

    Article  PubMed  CAS  Google Scholar 

  5. Zweifach A, Lewis RS (1993) Mitogen-regulated Ca2+ current of T lymphocytes is activated by depletion of intracellular Ca2+ stores. Proc Natl Acad Sci USA 90:6295–6299

    Article  PubMed  CAS  Google Scholar 

  6. Lewis RS (2001) Calcium signaling mechanisms in T lymphocytes. Annu Rev Immunol 19:497–521

    Article  PubMed  CAS  Google Scholar 

  7. Clapham DE, Runnels LW, Strubing C (2001) The TRP ion channel family. Nat Rev Neurosci 2:387–396

    Article  PubMed  CAS  Google Scholar 

  8. Feske S et al (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441:179–185

    Article  PubMed  CAS  Google Scholar 

  9. Vig M et al (2006) CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312:1220–1223

    Article  PubMed  CAS  Google Scholar 

  10. Zhang SL et al (2006) Genome-wide RNAi screen of Ca(2+) influx identifies genes that regulate Ca(2+) release-activated Ca(2+) channel activity. Proc Natl Acad Sci USA 103:9357–9362

    Article  PubMed  CAS  Google Scholar 

  11. McNally BA, Yamashita M, Engh A, Prakriya M (2009) Structural determinants of ion permeation in CRAC channels. Proc Natl Acad Sci USA 106:22516–22521

    Article  PubMed  CAS  Google Scholar 

  12. Prakriya M et al (2006) Orai1 is an essential pore subunit of the CRAC channel. Nature 443:230–233

    Article  PubMed  CAS  Google Scholar 

  13. Vig M et al (2006) CRACM1 multimers form the ion-selective pore of the CRAC channel. Curr Biol 16:2073–2079

    Article  PubMed  CAS  Google Scholar 

  14. Yeromin AV et al (2006) Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443:226–229

    Article  PubMed  CAS  Google Scholar 

  15. Zhou Y, Ramachandran S, Oh-Hora M, Rao A, Hogan PG (2010) Pore architecture of the ORAI1 store-operated calcium channel. Proc Natl Acad Sci USA 107:4896–4901

    Article  PubMed  CAS  Google Scholar 

  16. Yamashita M, Navarro-Borelly L, McNally BA, Prakriya M (2007) Orai1 mutations alter ion permeation and Ca2+-dependent inactivation of CRAC channels: evidence for coupling of permeation and gating. J Gen Physiol 130:525–540

    Article  PubMed  CAS  Google Scholar 

  17. Gwack Y et al (2007) Biochemical and functional characterization of Orai proteins. J Biol Chem 282:16232–16243

    Article  PubMed  CAS  Google Scholar 

  18. Derler I et al (2009) Increased hydrophobicity at the N-terminus/membrane interface impairs gating of the SCID-related ORAI1 mutant. J Biol Chem 23:15903–15915

    Article  CAS  Google Scholar 

  19. Zhang SL et al (2011) Mutations in Orai1 transmembrane segment 1 cause STIM1-independent activation of Orai1 channels at glycine 98 and channel closure at arginine 91. Proc Natl Acad Sci USA 108:17838–17843

    Article  PubMed  CAS  Google Scholar 

  20. McNally BA, Prakriya M (2012) Permeation, selectivity, and gating in store-operated CRAC channels. J Physiol 590:4179–4191

    Google Scholar 

  21. McNally BA, Somasundaram A, Yamashita M, Prakriya M (2012) Gated regulation of CRAC channel ion selectivity by STIM1. Nature 482:241–245

    PubMed  CAS  Google Scholar 

  22. Mignen O, Thompson JL, Shuttleworth TJ (2008) Orai1 subunit stoichiometry of the mammalian CRAC channel pore. J Physiol 586:419–425

    Article  PubMed  CAS  Google Scholar 

  23. Penna A et al (2008) The CRAC channel consists of a tetramer formed by Stim-induced dimerization of Orai dimers. Nature 456:116–120

    Article  PubMed  CAS  Google Scholar 

  24. Ji W et al (2008) Functional stoichiometry of the unitary calcium-release-activated calcium channel. Proc Natl Acad Sci USA 105:13668–13673

    Article  PubMed  CAS  Google Scholar 

  25. Hogan PG, Lewis RS, Rao A (2010) Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Annu Rev Immunol 28:491–533

    Article  PubMed  CAS  Google Scholar 

  26. DeHaven WI, Smyth JT, Boyles RR, Putney JW Jr (2007) Calcium inhibition and calcium potentiation of Orai1, Orai2, and Orai3 calcium release-activated calcium channels. J Biol Chem 282:17548–17556

    Article  PubMed  CAS  Google Scholar 

  27. Lis A et al (2007) CRACM1, CRACM2, and CRACM3 are store-operated Ca2+ channels with distinct functional properties. Curr Biol 17:794–800

    Article  PubMed  CAS  Google Scholar 

  28. McCarl CA et al (2009) ORAI1 deficiency and lack of store-operated Ca2+ entry cause immunodeficiency, myopathy, and ectodermal dysplasia. J Allergy Clin Immunol 124:1311–1318 e1317

    Google Scholar 

  29. Gwack Y et al (2008) Hair loss and defective T- and B-cell function in mice lacking ORAI1. Mol Cell Biol 28:5209–5222

    Article  PubMed  CAS  Google Scholar 

  30. McCarl CA et al (2010) Store-operated Ca2+ entry through ORAI1 is critical for T cell-mediated autoimmunity and allograft rejection. J Immunol 185:5845–5858

    Article  PubMed  CAS  Google Scholar 

  31. Vig M et al (2008) Defective mast cell effector functions in mice lacking the CRACM1 pore subunit of store-operated calcium release-activated calcium channels. Nat Immunol 9:89–96

    Article  PubMed  CAS  Google Scholar 

  32. Liou J et al (2005) STIM is a Ca2+ sensor essential for Ca2+ -store-depletion-triggered Ca2+ influx. Curr Biol 15:1235–1241

    Article  PubMed  CAS  Google Scholar 

  33. Roos J et al (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169:435–445

    Article  PubMed  CAS  Google Scholar 

  34. Zhang SL et al (2005) STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437:902–905

    Article  PubMed  CAS  Google Scholar 

  35. Spassova MA et al (2006) STIM1 has a plasma membrane role in the activation of store-operated Ca(2+) channels. Proc Natl Acad Sci USA 103:4040–4045

    Article  PubMed  CAS  Google Scholar 

  36. Manji SS et al (2000) STIM1: a novel phosphoprotein located at the cell surface. Biochim Biophys Acta 1481:147–155

    Article  PubMed  CAS  Google Scholar 

  37. Oritani K, Kincade PW (1996) Identification of stromal cell products that interact with pre-B cells. J Cell Biol 134:771–782

    Article  PubMed  CAS  Google Scholar 

  38. Sabbioni S, Barbanti-Brodano G, Croce CM, Negrini M (1997) GOK: a gene at 11p15 involved in rhabdomyosarcoma and rhabdoid tumor development. Cancer Res 57:4493–4497

    PubMed  CAS  Google Scholar 

  39. Williams RT et al (2001) Identification and characterization of the STIM (stromal interaction molecule) gene family: coding for a novel class of transmembrane proteins. Biochem J 357:673–685

    Article  PubMed  CAS  Google Scholar 

  40. Williams RT et al (2002) Stromal interaction molecule 1 (STIM1), a transmembrane protein with growth suppressor activity, contains an extracellular SAM domain modified by N-linked glycosylation. Biochim Biophys Acta 1596:131–137

    Article  PubMed  CAS  Google Scholar 

  41. Stathopulos PB, Zheng L, Ikura M (2009) Stromal interaction molecule (STIM) 1 and STIM2 calcium sensing regions exhibit distinct unfolding and oligomerization kinetics. J Biol Chem 284:728–732

    Article  PubMed  CAS  Google Scholar 

  42. Stathopulos PB, Zheng L, Li GY, Plevin MJ, Ikura M (2008) Structural and mechanistic insights into STIM1-mediated initiation of store-operated calcium entry. Cell 135:110–122

    Article  PubMed  CAS  Google Scholar 

  43. Grosse J et al (2007) An EF-hand mutation in Stim1 causes premature platelet activation and bleeding in mice. J Clin Invest 117:3540–3550

    Article  PubMed  CAS  Google Scholar 

  44. Stathopulos PB, Li GY, Plevin MJ, Ames JB, Ikura M (2006) Stored Ca2+ depletion-induced oligomerization of stromal interaction molecule 1 (STIM1) via the EF-SAM region: an initiation mechanism for capacitive Ca2+ entry. J Biol Chem 281:35855–35862

    Article  PubMed  CAS  Google Scholar 

  45. Brandman O, Liou J, Park WS, Meyer T (2007) STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell 131:1327–1339

    Article  PubMed  CAS  Google Scholar 

  46. Kar P, Bakowski D, Di Capite J, Nelson C, Parekh AB (2012) Different agonists recruit different stromal interaction molecule proteins to support cytoplasmic Ca2+ oscillations and gene expression. Proc Natl Acad Sci USA 109:6969–6974

    Article  PubMed  CAS  Google Scholar 

  47. Luik RM, Wu MM, Buchanan J, Lewis RS (2006) The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER-plasma membrane junctions. J Cell Biol 174:815–825

    Article  PubMed  CAS  Google Scholar 

  48. Wu MM, Buchanan J, Luik RM, Lewis RS (2006) Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. J Cell Biol 174:803–813

    Article  PubMed  CAS  Google Scholar 

  49. Park CY et al (2009) STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 136:876–890

    Article  PubMed  CAS  Google Scholar 

  50. Xu P et al (2006) Aggregation of STIM1 underneath the plasma membrane induces clustering of Orai1. Biochem Biophys Res Commun 350:969–976

    Article  PubMed  CAS  Google Scholar 

  51. Yuan JP et al (2009) SOAR and the polybasic STIM1 domains gate and regulate Orai channels. Nat Cell Biol 11:337–343

    Article  PubMed  CAS  Google Scholar 

  52. Kawasaki T, Lange I, Feske S (2009) A minimal regulatory domain in the C-terminus of STIM1 binds to and activates ORAI1 CRAC channels. Biochem Biophys Res Commun 385:49–54

    Article  PubMed  CAS  Google Scholar 

  53. Muik M et al (2009) A cytosolic homomerization and a modulatory domain within STIM1 C-terminus determine coupling to ORAI1 channels. J Biol Chem 284:8421–8426

    Article  PubMed  CAS  Google Scholar 

  54. Muik M et al (2008) Dynamic coupling of the putative coiled-coil domain of ORAI1 with STIM1 mediates ORAI1 channel activation. J Biol Chem 283:8014–8022

    Article  PubMed  CAS  Google Scholar 

  55. Navarro-Borelly L et al (2008) STIM1-Orai1 interactions and Orai1 conformational changes revealed by live-cell FRET microscopy. J Physiol 586:5383–5401

    Article  PubMed  CAS  Google Scholar 

  56. Zhou Y et al (2010) STIM1 gates the store-operated calcium channel ORAI1 in vitro. Nat Struct Mol Biol 17:112–116

    Article  PubMed  CAS  Google Scholar 

  57. Baba Y et al (2006) Coupling of STIM1 to store-operated Ca2+ entry through its constitutive and inducible movement in the endoplasmic reticulum. Proc Natl Acad Sci USA 103:16704–16709

    Article  PubMed  CAS  Google Scholar 

  58. Covington ED, Wu MM, Lewis RS (2010) Essential role for the CRAC activation domain in store-dependent oligomerization of STIM1. Mol Biol Cell 21:1897–1907

    Article  PubMed  CAS  Google Scholar 

  59. Liou J, Fivaz M, Inoue T, Meyer T (2007) Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion. Proc Natl Acad Sci USA 104:9301–9306

    Article  PubMed  CAS  Google Scholar 

  60. Luik RM, Wang B, Prakriya M, Wu MM, Lewis RS (2008) Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation. Nature 454:538–542

    Article  PubMed  CAS  Google Scholar 

  61. Hoover PJ, Lewis RS (2011) Stoichiometric requirements for trapping and gating of Ca2+ release-activated Ca2+ (CRAC) channels by stromal interaction molecule 1 (STIM1). Proc Natl Acad Sci USA 108:13299–13304

    Article  PubMed  CAS  Google Scholar 

  62. Li Z et al (2011) Graded activation of CRAC channel by binding of different numbers of STIM1 to Orai1 subunits. Cell Res 21:305–315

    Article  PubMed  CAS  Google Scholar 

  63. Korzeniowski MK, Manjarres IM, Varnai P, Balla T (2010) Activation of STIM1-Orai1 involves an intramolecular switching mechanism. Sci Signal 3:ra82

    Google Scholar 

  64. Muik M et al (2011) STIM1 couples to ORAI1 via an intramolecular transition into an extended conformation. EMBO J 30:1678–1689

    Article  PubMed  CAS  Google Scholar 

  65. Yang X, Jin H, Cai X, Li S, Shen Y (2012) Structural and mechanistic insights into the activation of Stromal interaction molecule 1 (STIM1). Proc Natl Acad Sci USA 109:5657–5662

    Article  PubMed  CAS  Google Scholar 

  66. Calloway N, Holowka D, Baird B (2010) A basic sequence in STIM1 promotes Ca2+ influx by interacting with the C-terminal acidic coiled coil of Orai1. Biochemistry 49:1067–1071

    Article  PubMed  CAS  Google Scholar 

  67. Wang Y, Deng X, Gill DL (2010) Calcium signaling by STIM and Orai: intimate coupling details revealed. Sci Signal 3:pe42

    Google Scholar 

  68. Yang X, Jin H, Cai X, Li S, Shen Y (2012) Structural and mechanistic insights into the activation of Stromal interaction molecule 1 (STIM1). Proc Natl Acad Sci USA 109:5657–5662

    Article  PubMed  CAS  Google Scholar 

  69. Oh-Hora M et al (2008) Dual functions for the endoplasmic reticulum calcium sensors STIM1 and STIM2 in T cell activation and tolerance. Nat Immunol 9:432–443

    Article  PubMed  CAS  Google Scholar 

  70. Ma J, McCarl CA, Khalil S, Luthy K, Feske S (2010) T-cell specific deletion of STIM1 and STIM2 protects mice from EAE by impairing the effector functions of Th1 and Th17 cells. Eur J Immunol 40:3028–3042

    Article  PubMed  CAS  Google Scholar 

  71. Schuhmann MK et al (2010) Stromal interaction molecules 1 and 2 are key regulators of autoreactive T cell activation in murine autoimmune central nervous system inflammation. J Immunol 184:1536–1542

    Article  PubMed  CAS  Google Scholar 

  72. Hoth M, Penner R (1993) Calcium release-activated calcium current in rat mast cells. J Physiol 465:359–386

    PubMed  CAS  Google Scholar 

  73. Prakriya M, Lewis RS (2003) CRAC channels: activation, permeation, and the search for a molecular identity. Cell Calcium 33:311–321

    Article  PubMed  CAS  Google Scholar 

  74. Zweifach A, Lewis RS (1995) Rapid inactivation of depletion-activated calcium current (ICRAC) due to local calcium feedback. J Gen Physiol 105:209–226

    Article  PubMed  CAS  Google Scholar 

  75. Derler I et al (2009) A Ca2(+)release-activated Ca2(+) (CRAC) modulatory domain (CMD) within STIM1 mediates fast Ca2(+)-dependent inactivation of ORAI1 channels. J Biol Chem 284:24933–24938

    Article  PubMed  CAS  Google Scholar 

  76. Lee KP et al (2009) Molecular determinants of fast Ca2+ -dependent inactivation and gating of the Orai channels. Proc Natl Acad Sci USA 106:14687–14692

    Article  PubMed  CAS  Google Scholar 

  77. Mullins FM, Park CY, Dolmetsch RE, Lewis RS (2009) STIM1 and calmodulin interact with Orai1 to induce Ca2+ -dependent inactivation of CRAC channels. Proc Natl Acad Sci USA 106:15495–15500

    Article  PubMed  CAS  Google Scholar 

  78. Srikanth S, Jung HJ, Ribalet B, Gwack Y (2010) The intracellular loop of Orai1 plays a central role in fast inactivation of Ca2+ release-activated Ca2+ channels. J Biol Chem 285:5066–5075

    Article  PubMed  CAS  Google Scholar 

  79. Frischauf I et al (2011) Cooperativeness of Orai cytosolic domains tunes subtype-specific gating. J Biol Chem 286:8577–8584

    Article  PubMed  CAS  Google Scholar 

  80. Zweifach A, Lewis RS (1995) Slow calcium-dependent inactivation of depletion-activated calcium current. Store-dependent and -independent mechanisms. J Biol Chem 270:14445–14451

    Article  PubMed  CAS  Google Scholar 

  81. Parekh AB, Penner R (1995) Depletion-activated calcium current is inhibited by protein kinase in RBL-2H3 cells. Proc Natl Acad Sci USA 92:7907–7911

    Article  PubMed  CAS  Google Scholar 

  82. Malli R, Naghdi S, Romanin C, Graier WF (2008) Cytosolic Ca2+ prevents the subplasmalemmal clustering of STIM1: an intrinsic mechanism to avoid Ca2+ overload. J Cell Sci 121:3133–3139

    Article  PubMed  CAS  Google Scholar 

  83. Shen WW, Frieden M, Demaurex N (2011) Local cytosolic Ca2+ elevations are required for STIM1 de-oligomerization and termination of store-operated Ca2+ entry. J Biol Chem 286:36448–36459

    Article  PubMed  CAS  Google Scholar 

  84. Kawasaki T, Ueyama T, Lange I, Feske S, Saito N (2010) Protein kinase C-induced phosphorylation of Orai1 regulates the intracellular Ca2+ level via the store-operated Ca2+ channel. J Biol Chem 285:25720–25730

    Article  PubMed  CAS  Google Scholar 

  85. Smyth JT et al (2009) Phosphorylation of STIM1 underlies suppression of store-operated calcium entry during mitosis. Nat Cell Biol 11:1465–1472

    Article  PubMed  CAS  Google Scholar 

  86. Yu F, Sun L, Machaca K (2009) Orai1 internalization and STIM1 clustering inhibition modulate SOCE inactivation during meiosis. Proc Natl Acad Sci USA 106:17401–17406

    Article  PubMed  CAS  Google Scholar 

  87. Pozo-Guisado E et al (2010) Phosphorylation of STIM1 at ERK1/2 target sites modulates store-operated calcium entry. J Cell Sci 123:3084–3093

    Article  PubMed  CAS  Google Scholar 

  88. Eylenstein A et al (2011) Stimulation of Ca2+ -channel Orai1/STIM1 by serum- and glucocorticoid-inducible kinase 1 (SGK1). Faseb J 25:2012–2021

    Article  PubMed  CAS  Google Scholar 

  89. Lang F, Eylenstein A, Shumilina E (2012) Regulation of Orai1/STIM1 by the kinases SGK1 and AMPK. Cell Calcium [Epub ahead of print]

  90. Keil JM, Shen Z, Briggs SP, Patrick GN (2010) Regulation of STIM1 and SOCE by the ubiquitin-proteasome system (UPS). PLoS ONE 5:e13465

    Article  PubMed  CAS  Google Scholar 

  91. Bogeski I et al (2010) Differential redox regulation of ORAI ion channels: a mechanism to tune cellular calcium signaling. Sci Signal 3:ra24

    Google Scholar 

  92. Hoth M, Fanger CM, Lewis RS (1997) Mitochondrial regulation of store-operated calcium signaling in T lymphocytes. J Cell Biol 137:633–648

    Article  PubMed  CAS  Google Scholar 

  93. Hoth M, Button DC, Lewis RS (2000) Mitochondrial control of calcium-channel gating: a mechanism for sustained signaling and transcriptional activation in T lymphocytes. Proc Natl Acad Sci USA 97:10607–10612

    Article  PubMed  CAS  Google Scholar 

  94. Gilabert JA, Parekh AB (2000) Respiring mitochondria determine the pattern of activation and inactivation of the store-operated Ca(2+) current I(CRAC). EMBO J 19:6401–6407

    Article  PubMed  CAS  Google Scholar 

  95. Glitsch MD, Bakowski D, Parekh AB (2002) Store-operated Ca2+ entry depends on mitochondrial Ca2+ uptake. EMBO J 21:6744–6754

    Article  PubMed  CAS  Google Scholar 

  96. Quintana A et al (2006) Sustained activity of calcium release-activated calcium channels requires translocation of mitochondria to the plasma membrane. J Biol Chem 281:40302–40309

    Article  PubMed  CAS  Google Scholar 

  97. Quintana A et al (2011) Calcium microdomains at the immunological synapse: how ORAI channels, mitochondria and calcium pumps generate local calcium signals for efficient T-cell activation. EMBO J 30:3895–3912

    Article  PubMed  CAS  Google Scholar 

  98. Quintana A et al (2007) T cell activation requires mitochondrial translocation to the immunological synapse. Proc Natl Acad Sci USA 104:14418–14423

    Article  PubMed  CAS  Google Scholar 

  99. Barr VA et al (2008) Dynamic movement of the calcium sensor STIM1 and the calcium channel Orai1 in activated T-cells: puncta and distal caps. Mol Biol Cell 19:2802–2817

    Article  PubMed  CAS  Google Scholar 

  100. Lioudyno MI et al (2008) Orai1 and STIM1 move to the immunological synapse and are up-regulated during T cell activation. Proc Natl Acad Sci USA 105:2011–2016

    Article  PubMed  CAS  Google Scholar 

  101. Baughman JM et al (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476:341–345

    Article  PubMed  CAS  Google Scholar 

  102. De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476:336–340

    Article  PubMed  CAS  Google Scholar 

  103. Schwindling C, Quintana A, Krause E, Hoth M (2010) Mitochondria positioning controls local calcium influx in T cells. J Immunol 184:184–190

    Article  PubMed  CAS  Google Scholar 

  104. Wang X, Schwarz TL (2009) The mechanism of Ca2+ -dependent regulation of kinesin-mediated mitochondrial motility. Cell 136:163–174

    Article  PubMed  CAS  Google Scholar 

  105. Dolmetsch RE, Lewis RS, Goodnow CC, Healy JI (1997) Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386:855–858

    Article  PubMed  CAS  Google Scholar 

  106. Feske S, Giltnane J, Dolmetsch R, Staudt LM, Rao A (2001) Gene regulation mediated by calcium signals in T lymphocytes. Nat Immunol 2:316–324

    Article  PubMed  CAS  Google Scholar 

  107. Beyersdorf N et al (2009) STIM1-independent T cell development and effector function in vivo. J Immunol 182:3390–3397

    Article  PubMed  CAS  Google Scholar 

  108. Picard C et al (2009) STIM1 mutation associated with a syndrome of immunodeficiency and autoimmunity. N Engl J Med 360:1971–1980

    Article  PubMed  CAS  Google Scholar 

  109. Peinelt C et al (2006) Amplification of CRAC current by STIM1 and CRACM1 (Orai1). Nat Cell Biol 8:771–773

    Article  PubMed  CAS  Google Scholar 

  110. Soboloff J et al (2006) Orai1 and STIM reconstitute store-operated calcium channel function. J Biol Chem 281:20661–20665

    Article  PubMed  CAS  Google Scholar 

  111. Srikanth S et al (2010) A novel EF-hand protein, CRACR2A, is a cytosolic Ca2+ sensor that stabilizes CRAC channels in T cells. Nat Cell Biol 12:436–446

    Article  PubMed  CAS  Google Scholar 

  112. Srikanth S et al (2012) Junctate is a Ca2+-sensing structural component of Orai1 and stromal interaction molecule 1 (STIM1). Proc Natl Acad Sci USA 109:8682–8687

    Google Scholar 

  113. Carrasco S, Meyer T (2011) STIM proteins and the endoplasmic reticulum-plasma membrane junctions. Annu Rev Biochem 80:973–1000

    Article  PubMed  CAS  Google Scholar 

  114. Krapivinsky G, Krapivinsky L, Stotz SC, Manasian Y, Clapham DE (2011) POST, partner of stromal interaction molecule 1 (STIM1), targets STIM1 to multiple transporters. Proc Natl Acad Sci USA 108:19234–19239

    Article  PubMed  CAS  Google Scholar 

  115. Feng M et al (2010) Store-independent activation of Orai1 by SPCA2 in mammary tumors. Cell 143:84–98

    Article  PubMed  CAS  Google Scholar 

  116. Feng JM (2007) Minireview: expression and function of Golli protein in immune system. Neurochem Res 32:273–278

    Article  PubMed  CAS  Google Scholar 

  117. Feng JM et al (2006) Golli protein negatively regulates store depletion-induced calcium influx in T cells. Immunity 24:717–727

    Article  PubMed  CAS  Google Scholar 

  118. Walsh CM, Doherty MK, Tepikin AV, Burgoyne RD (2010) Evidence for an interaction between Golli and STIM1 in store-operated calcium entry. Biochem J 430:453–460

    Article  PubMed  CAS  Google Scholar 

  119. Zeiger W et al (2011) Stanniocalcin 2 is a negative modulator of store-operated calcium entry. Mol Cell Biol 31:3710–3722

    Article  PubMed  CAS  Google Scholar 

  120. Ito D et al (2004) Characterization of stanniocalcin 2, a novel target of the mammalian unfolded protein response with cytoprotective properties. Mol Cell Biol 24:9456–9469

    Article  PubMed  CAS  Google Scholar 

  121. Peaper DR, Cresswell P (2008) Regulation of MHC class I assembly and peptide binding. Annu Rev Cell Dev Biol 24:343–368

    Article  PubMed  CAS  Google Scholar 

  122. Wearsch PA, Cresswell P (2007) Selective loading of high-affinity peptides onto major histocompatibility complex class I molecules by the tapasin-ERp57 heterodimer. Nat Immunol 8:873–881

    Article  PubMed  CAS  Google Scholar 

  123. Li Y, Camacho P (2004) Ca2+-dependent redox modulation of SERCA 2b by ERp57. J Cell Biol 164:35–46

    Article  PubMed  CAS  Google Scholar 

  124. Prins D, Groenendyk J, Touret N, Michalak M (2011) Modulation of STIM1 and capacitative Ca2+ entry by the endoplasmic reticulum luminal oxidoreductase ERp57. EMBO Rep 12:1182–1188

    Article  PubMed  CAS  Google Scholar 

  125. Hawkins BJ et al (2010) S-glutathionylation activates STIM1 and alters mitochondrial homeostasis. J Cell Biol 190:391–405

    Article  PubMed  CAS  Google Scholar 

  126. Palty R, Raveh A, Kaminsky I, Meller R, Reuveny E (2012) SARAF inactivates the store-operated calcium entry machinery to prevent excess calcium refilling. Cell 149:425–438

    Article  PubMed  CAS  Google Scholar 

  127. Dustin ML, Cooper JA (2000) The immunological synapse and the actin cytoskeleton: molecular hardware for T cell signaling. Nat Immunol 1:23–29

    Article  PubMed  CAS  Google Scholar 

  128. Monks CR, Freiberg BA, Kupfer H, Sciaky N, Kupfer A (1998) Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395:82–86

    Article  PubMed  CAS  Google Scholar 

  129. Orci L et al (2009) From the cover: STIM1-induced precortical and cortical subdomains of the endoplasmic reticulum. Proc Natl Acad Sci USA 106:19358–19362

    Article  PubMed  CAS  Google Scholar 

  130. Huse M, Lillemeier BF, Kuhns MS, Chen DS, Davis MM (2006) T cells use two directionally distinct pathways for cytokine secretion. Nat Immunol 7:247–255

    Article  PubMed  CAS  Google Scholar 

  131. Stinchcombe JC, Majorovits E, Bossi G, Fuller S, Griffiths GM (2006) Centrosome polarization delivers secretory granules to the immunological synapse. Nature 443:462–465

    Article  PubMed  CAS  Google Scholar 

  132. Heissmeyer V et al (2004) Calcineurin imposes T cell unresponsiveness through targeted proteolysis of signaling proteins. Nat Immunol 5:255–265

    Article  PubMed  CAS  Google Scholar 

  133. Macian F et al (2002) Transcriptional mechanisms underlying lymphocyte tolerance. Cell 109:719–731

    Article  PubMed  CAS  Google Scholar 

  134. Maul-Pavicic A et al (2011) ORAI1-mediated calcium influx is required for human cytotoxic lymphocyte degranulation and target cell lysis. Proc Natl Acad Sci USA 108:3324–3329

    Article  PubMed  CAS  Google Scholar 

  135. Pores-Fernando AT, Zweifach A (2009) Calcium influx and signaling in cytotoxic T-lymphocyte lytic granule exocytosis. Immunol Rev 231:160–173

    Article  PubMed  CAS  Google Scholar 

  136. Feske S (2010) CRAC channelopathies. Pflugers Arch 460:417–435

    Article  PubMed  CAS  Google Scholar 

  137. Feske S, Picard C, Fischer A (2010) Immunodeficiency due to mutations in ORAI1 and STIM1. Clin Immunol 135:169–182

    Article  PubMed  CAS  Google Scholar 

  138. Feske S (2011) Immunodeficiency due to defects in store-operated calcium entry. Ann N Y Acad Sci 1238:74–90

    Article  PubMed  CAS  Google Scholar 

  139. Feske S (2011) Immunodeficiency due to defects in store-operated calcium entry. Ann N Y Acad Sci 1238:74–90

    Article  PubMed  CAS  Google Scholar 

  140. Oh-hora M (2009) Calcium signaling in the development and function of T-lineage cells. Immunol Rev 231:210–224

    Article  PubMed  CAS  Google Scholar 

  141. Feske S (2009) ORAI1 and STIM1 deficiency in human and mice: roles of store-operated Ca2+ entry in the immune system and beyond. Immunol Rev 231:189–209

    Article  PubMed  CAS  Google Scholar 

  142. Le Deist F et al (1995) A primary T-cell immunodeficiency associated with defective transmembrane calcium influx. Blood 85:1053–1062

    PubMed  Google Scholar 

  143. Matsumoto M et al (2011) The calcium sensors STIM1 and STIM2 control B cell regulatory function through interleukin-10 production. Immunity 34:703–714

    Article  PubMed  CAS  Google Scholar 

  144. Fuchs S et al (2012) Antiviral and regulatory T cell immunity in a patient with stromal interaction molecule 1 deficiency. J Immunol 188:1523–1533

    Article  PubMed  CAS  Google Scholar 

  145. Cheng KT, Alevizos I, Liu X, Swaim WD, Yin H, Feske S, Oh-Hora M, Ambudkar IS (2012) STIM1 and STIM2 protein deficiency in T lymphocytes underlies development of the exocrine gland autoimmune disease, Sjogren’s syndrome. Proc Natl Acad Sci USA 109:14544–14549

  146. Shaw PJ, Feske S (2011) Physiological and pathophysiological functions of SOCE in the immune system. Frontiers Biosci 4:2253–2268

    Google Scholar 

  147. Shaw PJ, Feske S (2012) Regulation of lymphocyte function by ORAI and STIM proteins in infection and autoimmunity. J Physiol 590:4157–4167

    Google Scholar 

Download references

Acknowledgments

We thank the members of our labs and M. Prakriya for a critical reading of the manuscript and many helpful suggestions. This work was funded by NIH grant AI066128 to S.F., a postdoctoral fellowship by the National Multiple Sclerosis Society to P.S. and grants from the Deutsche Forschungsgemeinschaft SFB 894 (project A1), IRTG 1830, and GRK 1326 to M.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Feske.

Additional information

P. J. Shaw and B. Qu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaw, P.J., Qu, B., Hoth, M. et al. Molecular regulation of CRAC channels and their role in lymphocyte function. Cell. Mol. Life Sci. 70, 2637–2656 (2013). https://doi.org/10.1007/s00018-012-1175-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1175-2

Keywords

Navigation