Skip to main content

Advertisement

Log in

The unique substrate specificity of human AOC2, a semicarbazide-sensitive amine oxidase

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Semicarbazide-sensitive amine oxidases (SSAOs) catalyze oxidative deamination of primary amines, but the true physiological function of these enzymes is still poorly understood. Here, we have studied the functional and structural characteristics of a human cell-surface SSAO, AOC2, which is homologous to the better characterized family member, AOC3. The preferred in vitro substrates of AOC2 were found to be 2-phenylethylamine, tryptamine and p-tyramine instead of methylamine and benzylamine, the favored substrates of AOC3. Molecular modeling suggested structural differences between AOC2 and AOC3, which provide AOC2 with the capability to use the larger monoamines as substrates. Even though AOC2 mRNA was expressed in many tissues, the only tissues with detectable AOC2-like enzyme activity were found in the eye. Characterization of AOC2 will help in evaluating the contribution of this enzyme to the pathological processes attributed to the SSAO activity and in designing specific inhibitors for the individual members of the SSAO family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mathys KC, Ponnampalam SN, Padival S, Nagaraj RH (2002) Semicarbazide-sensitive amine oxidase in aortic smooth muscle cells mediates synthesis of a methylglyoxal-AGE: implications for vascular complications in diabetes. Biochem Biophys Res Commun 297:863–869

    Article  PubMed  CAS  Google Scholar 

  2. Stolen CM, Madanat R, Marti L, Kari S, Yegutkin GG, Sariola H, Zorzano A, Jalkanen S (2004) Semicarbazide sensitive amine oxidase overexpression has dual consequences: insulin mimicry and diabetes-like complications. FASEB J 18:702–704

    PubMed  CAS  Google Scholar 

  3. Griendling KK, Sorescu D, Lassegue B, Ushio-Fukai M (2000) Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol 20:2175–2183

    PubMed  CAS  Google Scholar 

  4. Enrique-Tarancon G, Castan I, Morin N, Marti L, Abella A, Camps M, Casamitjana R, Palacin M, Testar X, Degerman E, Carpene C, Zorzano A (2000) Substrates of semicarbazide-sensitive amine oxidase co-operate with vanadate to stimulate tyrosine phosphorylation of insulin-receptor-substrate proteins, phosphoinositide 3-kinase activity and GLUT4 translocation in adipose cells. Biochem J 350(Pt 1):171–180

    Article  PubMed  CAS  Google Scholar 

  5. Zorzano A, Abella A, Marti L, Carpene C, Palacin M, Testar X (2003) Semicarbazide-sensitive amine oxidase activity exerts insulin-like effects on glucose metabolism and insulin-signaling pathways in adipose cells. Biochim Biophys Acta 1647:3–9

    PubMed  CAS  Google Scholar 

  6. Enrique-Tarancon G, Marti L, Morin N, Lizcano JM, Unzeta M, Sevilla L, Camps M, Palacin M, Testar X, Carpene C, Zorzano A (1998) Role of semicarbazide-sensitive amine oxidase on glucose transport and GLUT4 recruitment to the cell surface in adipose cells. J Biol Chem 273:8025–8032

    Article  PubMed  CAS  Google Scholar 

  7. Mercier N, Moldes M, El Hadri K, Feve B (2001) Semicarbazide-sensitive amine oxidase activation promotes adipose conversion of 3T3–L1 cells. Biochem J 358:335–342

    Article  PubMed  CAS  Google Scholar 

  8. Gokturk C, Nilsson J, Nordquist J, Kristensson M, Svensson K, Soderberg C, Israelson M, Garpenstrand H, Sjoquist M, Oreland L, Forsberg-Nilsson K (2003) Overexpression of semicarbazide-sensitive amine oxidase in smooth muscle cells leads to an abnormal structure of the aortic elastic laminas. Am J Pathol 163:1921–1928

    PubMed  Google Scholar 

  9. Langford SD, Trent MB, Boor PJ (2002) Semicarbazide-sensitive amine oxidase and extracellular matrix deposition by smooth-muscle cells. Cardiovasc Toxicol 2:141–150

    Article  PubMed  CAS  Google Scholar 

  10. Buffoni F (1995) Semicarbazide-sensitive amine oxidases: some biochemical properties and general considerations. Prog Brain Res 106:323–331

    Article  PubMed  CAS  Google Scholar 

  11. Callingham BA, Crosbie AE, Rous BA (1995) Some aspects of the pathophysiology of semicarbazide-sensitive amine oxidase enzymes. Prog Brain Res 106:305–321

    Article  PubMed  CAS  Google Scholar 

  12. O’Sullivan J, Unzeta M, Healy J, O’Sullivan MI, Davey G, Tipton KF (2004) Semicarbazide-sensitive amine oxidases: enzymes with quite a lot to do. Neurotoxicology 25:303–315

    Article  PubMed  CAS  Google Scholar 

  13. Yu PH, Wright S, Fan EH, Lun ZR, Gubisne-Harberle D (2003) Physiological and pathological implications of semicarbazide-sensitive amine oxidase. Biochim Biophys Acta 1647:193–199

    PubMed  CAS  Google Scholar 

  14. Salmi M, Jalkanen S (1992) A 90-kilodalton endothelial cell molecule mediating lymphocyte binding in humans. Science 257:1407–1409

    Article  PubMed  CAS  Google Scholar 

  15. Salmi M, Jalkanen S (1996) Human vascular adhesion protein 1 (VAP-1) is a unique sialoglycoprotein that mediates carbohydrate-dependent binding of lymphocytes to endothelial cells. J Exp Med 183:569–579

    Article  PubMed  CAS  Google Scholar 

  16. Smith DJ, Salmi M, Bono P, Hellman J, Leu T, Jalkanen S (1998) Cloning of vascular adhesion protein 1 reveals a novel multifunctional adhesion molecule. J Exp Med 188:17–27

    Article  PubMed  CAS  Google Scholar 

  17. Salminen TA, Smith DJ, Jalkanen S, Johnson MS (1998) Structural model of the catalytic domain of an enzyme with cell adhesion activity: human vascular adhesion protein-1 (HVAP-1) D4 domain is an amine oxidase. Protein Eng 11:1195–1204

    Article  PubMed  CAS  Google Scholar 

  18. Airenne TT, Nymalm Y, Kidron H, Smith DJ, Pihlavisto M, Salmi M, Jalkanen S, Johnson MS, Salminen TA (2005) Crystal structure of the human vascular adhesion protein-1: unique structural features with functional implications. Protein Sci 14:1964–1974

    Article  PubMed  CAS  Google Scholar 

  19. Jakobsson E, Nilsson J, Kallstrom U, Ogg D, Kleywegt GJ (2005) Crystallization of a truncated soluble human semicarbazide-sensitive amine oxidase. Acta Crystallogr Sect F Struct Biol Cryst Commun 61:274–278

    Article  PubMed  CAS  Google Scholar 

  20. Imamura Y, Kubota R, Wang Y, Asakawa S, Kudoh J, Mashima Y, Oguchi Y, Shimizu N (1997) Human retina-specific amine oxidase (RAO): cDNA cloning, tissue expression, and chromosomal mapping. Genomics 40:277–283

    Article  PubMed  CAS  Google Scholar 

  21. Imamura Y, Noda S, Mashima Y, Kudoh J, Oguchi Y, Shimizu N (1998) Human retina-specific amine oxidase: genomic structure of the gene (AOC2), alternatively spliced variant, and mRNA expression in retina. Genomics 51:293–298

    Article  PubMed  CAS  Google Scholar 

  22. Zhang Q, Mashima Y, Noda S, Imamura Y, Kudoh J, Shimizu N, Nishiyama T, Umeda S, Oguchi Y, Tanaka Y, Iwata T (2003) Characterization of AOC2 gene encoding a copper-binding amine oxidase expressed specifically in retina. Gene 318:45–53

    Article  PubMed  CAS  Google Scholar 

  23. Bour S, Daviaud D, Gres S, Lefort C, Prevot D, Zorzano A, Wabitsch M, Saulnier-Blache JS, Valet P, Carpene C (2007) Adipogenesis-related increase of semicarbazide-sensitive amine oxidase and monoamine oxidase in human adipocytes. Biochimie 89:916–925

    Article  PubMed  CAS  Google Scholar 

  24. Heniquez A, Meissonnier G, Visentin V, Prevot D, Carpene C (2003) High expression of semicarbazide-sensitive amine oxidase genes AOC2 and AOC3, but not the diamine oxidase gene AOC1 in human adipocytes. Inflamm Res 52(suppl 1):S74–S75

    Article  PubMed  CAS  Google Scholar 

  25. Wuorela M, Jalkanen S, Pelliniemi LJ, Toivanen P (1990) Nurse cells of the bursa of Fabricius: do they exist? Eur J Immunol 20:913–917

    Article  PubMed  CAS  Google Scholar 

  26. Chirgwin J, Przybyla A, MacDonald R, Rutter W (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry (Mosc) 18:5294–5299

    Article  CAS  Google Scholar 

  27. Copeland RA (2000) Enzymes: a practical introduction to structure, mechanism and data analysis, 2nd edn. Wiley, New York

    Google Scholar 

  28. Johnson MS, Overington JP (1993) A structural basis for sequence comparisons. An evaluation of scoring methodologies. J Mol Biol 233:716–738

    Article  PubMed  CAS  Google Scholar 

  29. Lehtonen JV, Still DJ, Rantanen VV, Ekholm J, Bjorklund D, Iftikhar Z, Huhtala M, Repo S, Jussila A, Jaakkola J, Pentikainen O, Nyronen T, Salminen T, Gyllenberg M, Johnson MS (2004) BODIL: a molecular modeling environment for structure–function analysis and drug design. J Comput Aided Mol Des 18:401–419

    Article  PubMed  CAS  Google Scholar 

  30. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  PubMed  CAS  Google Scholar 

  31. Wilmot CM, Murray JM, Alton G, Parsons MR, Convery MA, Blakeley V, Corner AS, Palcic MM, Knowles PF, McPherson MJ, Phillips SE (1997) Catalytic mechanism of the quinoenzyme amine oxidase from Escherichia coli: exploring the reductive half-reaction. Biochemistry (Mosc) 36:1608–1620

    Article  CAS  Google Scholar 

  32. Sippl MJ (1993) Recognition of errors in three-dimensional structures of proteins. Proteins 17:355–362

    Article  PubMed  CAS  Google Scholar 

  33. Johnson M, Lehtonen J (2000) Bioinformatics. In: Higgins D, Taylor W (eds), Oxford University Press, Oxford, United Kingdom, pp 15-50

  34. Word JM, Lovell SC, Richardson JS, Richardson DC (1999) Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. J Mol Biol 285:1735–1747

    Article  PubMed  CAS  Google Scholar 

  35. Jones G, Willett P, Glen RC (1995) Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J Mol Biol 245:43–53

    Article  PubMed  CAS  Google Scholar 

  36. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748

    Article  PubMed  CAS  Google Scholar 

  37. deLano, W (2002) The PyMOL Molecular Graphics System. DeLano Scientific, San Carlos, CA, USA. http://www.pymol.org

  38. Tapon N, Nagata K, Lamarche N, Hall A (1998) A new rac target POSH is an SH3-containing scaffold protein involved in the JNK and NF-kappaB signalling pathways. EMBO J 17:1395–1404

    Article  PubMed  CAS  Google Scholar 

  39. Jalkanen S, Salmi M (2001) Cell surface monoamine oxidases: enzymes in search of a function. EMBO J 20:3893–3901

    Article  PubMed  CAS  Google Scholar 

  40. Mu D, Medzihradszky KF, Adams GW, Mayer P, Hines WM, Burlingame AL, Smith AJ, Cai D, Klinman JP (1994) Primary structures for a mammalian cellular and serum copper amine oxidase. J Biol Chem 269:9926–9932

    PubMed  CAS  Google Scholar 

  41. Buffoni F (1966) Histaminase and related amine oxidases. Pharmacol Rev 18:1163–1199

    PubMed  CAS  Google Scholar 

  42. Salmi M, Hellman J, Jalkanen S (1998) The role of two distinct endothelial molecules, vascular adhesion protein-1 and peripheral lymph node addressin, in the binding of lymphocyte subsets to human lymph nodes. J Immunol 160:5629–5636

    PubMed  CAS  Google Scholar 

  43. Su AI, Cooke MP, Ching KA, Hakak Y, Walker JR, Wiltshire T, Orth AP, Vega RG, Sapinoso LM, Moqrich A, Patapoutian A, Hampton GM, Schultz PG, Hogenesch JB (2002) Large-scale analysis of the human and mouse transcriptomes. Proc Natl Acad Sci USA 99:4465–4470

    Article  PubMed  CAS  Google Scholar 

  44. Fernandez de Arriba A, Lizcano JM, Balsa D, Unzeta M (1991) Contribution of different amine oxidases to the metabolism of dopamine in bovine retina. Biochem Pharmacol 42:2355–2361

    Article  PubMed  CAS  Google Scholar 

  45. Roh JH, Suzuki H, Azakami H, Yamashita M, Murooka Y, Kumagai H (1994) Purification, characterization, and crystallization of monoamine oxidase from Escherichia coli K-12. Biosci Biotechnol Biochem 58:1652–1656

    Article  PubMed  CAS  Google Scholar 

  46. Wilce MC, Dooley DM, Freeman HC, Guss JM, Matsunami H, McIntire WS, Ruggiero CE, Tanizawa K, Yamaguchi H (1997) Crystal structures of the copper-containing amine oxidase from Arthrobacter globiformis in the holo and apo forms: implications for the biogenesis of topaquinone. Biochemistry (Mosc) 36:16116–16133

    Article  CAS  Google Scholar 

  47. Gronvall-Nordquist JL, Backlund LB, Garpenstrand H, Ekblom J, Landin B, Yu PH, Oreland L, Rosenqvist U (2001) Follow-up of plasma semicarbazide-sensitive amine oxidase activity and retinopathy in Type 2 diabetes mellitus. J Diabetes Complications 15:250–256

    Article  PubMed  CAS  Google Scholar 

  48. Weiss HG, Klocker J, Labeck B, Nehoda H, Aigner F, Klingler A, Ebenbichler C, Foger B, Lechleitner M, Patsch JR, Schwelberger HG (2003) Plasma amine oxidase: a postulated cardiovascular risk factor in nondiabetic obese patients. Metabolism 52:688–692

    Article  PubMed  CAS  Google Scholar 

  49. Schwelberger HG (2007) The origin of mammalian plasma amine oxidases. J Neural Transm 114:757–762

    Article  PubMed  CAS  Google Scholar 

  50. Noda K, Miyahara S, Nakazawa T, Almulki L, Nakao S, Hisatomi T, She H, Thomas KL, Garland RC, Miller JW, Gragoudas ES, Kawai Y, Mashima Y, Hafezi-Moghadam A (2008) Inhibition of vascular adhesion protein-1 suppresses endotoxin-induced uveitis. FASEB J 22:1094–1103

    Article  PubMed  CAS  Google Scholar 

  51. Noda K, She H, Nakazawa T, Hisatomi T, Nakao S, Almulki L, Zandi S, Miyahara S, Ito Y, Thomas KL, Garland RC, Miller JW, Gragoudas ES, Mashima Y, Hafezi-Moghadam A (2008) Vascular adhesion protein-1 blockade suppresses choroidal neovascularization. FASEB J 22:2928–2935

    Article  PubMed  CAS  Google Scholar 

  52. Maula SM, Salminen T, Kaitaniemi S, Nymalm Y, Smith DJ, Jalkanen S (2005) Carbohydrates located on the top of the “cap” contribute to the adhesive and enzymatic functions of vascular adhesion protein-1. Eur J Immunol 35:2718–2727

    Article  PubMed  CAS  Google Scholar 

  53. Kurkijarvi R, Adams DH, Leino R, Mottonen T, Jalkanen S, Salmi M (1998) Circulating form of human vascular adhesion protein-1 (VAP-1): increased serum levels in inflammatory liver diseases. J Immunol 161:1549–1557

    PubMed  CAS  Google Scholar 

  54. Bono P, Salmi M, Smith DJ, Jalkanen S (1998) Cloning and characterization of mouse vascular adhesion protein-1 reveals a novel molecule with enzymatic activity. J Immunol 160:5563–5571

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The expert technical assistance of Teija Pöysti, Maritta Pohjansalo, Pirjo Heinilä, Etta-Liisa Väänänen, Riikka Sjöroos, Sari Mäki, and Laila Reunanen is greatly appreciated. Drs. Heikki Irjala and Kalle Alanen are thanked for providing us with the tissue samples. Dr. Gennady Yegutkin is thanked for advice. Professor Mark Johnson is acknowledged for the excellent facilities at the Structural Bioinformatics Laboratory at the Department of Biochemistry and Pharmacy, Åbo Akademi University. This work was supported by the Academy of Finland, the Sigrid Juselius Foundation, the Emil Aaltonen Foundation, and the Varsinais-Suomi Regional Fund of the Finnish Cultural Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kati Elima.

Electronic supplementary material

Below is the link to the electronic supplementary material.

18_2009_76_MOESM1_ESM.ppt

Supplemental Figure 1. Sequence alignment of mammalian monoamine oxidazing SSAOs. The deduced amino acid sequences of four monoamine oxidizing mammalian SSAOs from GenBank were compared. The SSAOs shown are human AOC3 (VAP-1, AF067406), mouse AOC3 (mAOC3, mVAP-1, AF054831), human AOC2 (hRAO, D88213) and Bovine Serum Amine Oxidase (BSAO, L27218). Highlighted are: yellow, the hydrophobic N-terminal sequence; red, the conserved signature motif of SSAO active site, where the first tyrosine is post-translationally modified to topaquinone; pink, (putative) catalytic site base; light green, the conserved, Cu(II) binding histidine residues; turquoise, the conserved cysteine residues involved in dimerization; dark blue the putative N-linked glycosylation sites. The RGD sequence of AOC3 is indicated with red letters. The underlined sequence corresponds to the region deleted in the AOC2 splice variant 2 (sv2). For review of the consensus sites important for SSAO activity, see [39]. (PPT 55 kb)

18_2009_76_MOESM2_ESM.tif

Supplemental Figure 2. Antibodies recognizing AOC3 alone or both AOC3 and AOC2 give identical staining patterns. Frozen sections of human tonsil were stained with the monoclonal antibody 2D10 detecting only AOC3 (left panel) and with the polyclonal antibody poly-VAP detecting both AOC2 and AOC3 (right panel). Scale bar 100 μm. (TIFF 15356 kb)

ESM Table (DOC 43 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaitaniemi, S., Elovaara, H., Grön, K. et al. The unique substrate specificity of human AOC2, a semicarbazide-sensitive amine oxidase. Cell. Mol. Life Sci. 66, 2743–2757 (2009). https://doi.org/10.1007/s00018-009-0076-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0076-5

Keywords

Navigation