Skip to main content
Log in

CX3CR1 positively regulates BCR signaling coupled with cell metabolism via negatively controlling actin remodeling

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

A Correction to this article was published on 13 May 2020

This article has been updated

Abstract

As an important chemokine receptor, the role of CX3CR1 has been studied extensively on the migration of lymphocytes including T and B cells. Although CX3CR1+ B cells have immune suppressor properties, little is known about its role on the regulation of BCR signaling and B cell differentiation as well as the underlying molecular mechanism. We have used CX3CR1 KO mice to study the effect of CX3CR1 deficiency on BCR signaling and B cell differentiation. Interestingly, we found that proximal BCR signaling, such as the activation of CD19, BTK and SHIP was reduced in CX3CR1 KO B cells upon antigenic stimulation. However, the activation of mTORC signaling was enhanced. Mechanistically, we found that the reduced BCR signaling in CX3CR1 KO B cells was due to reduced BCR clustering, which is caused by the enhanced actin accumulation by the plasma membrane via increased activation of WASP. This caused an increased differentiation of MZ B cells in CX3CR1 KO mice and an enhanced generation of plasma cells (PC) and antibodies. Our study shows that CX3CR1 regulates BCR signaling via actin remodeling and affects B cell differentiation and the humoral immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 13 May 2020

    In the original published version of the article, the red squares in the figures which indicated the corrections.

References

  1. Combadiere C, Ahuja SK, Murphy PM (1995) Cloning, chromosomal localization, and RNA expression of a human beta chemokine receptor-like gene. DNA Cell Biol 14:673–680

    CAS  Google Scholar 

  2. Combadiere C, Salzwedel K, Smith ED, Tiffany HL, Berger EA, Murphy PM (1998) Identification of CX3CR1. A chemotactic receptor for the human CX3C chemokine fractalkine and a fusion coreceptor for HIV-1. J Biol Chem 273:23799–23804

    CAS  Google Scholar 

  3. Imai T, Hieshima K, Haskell C, Baba M, Nagira M, Nishimura M, Kakizaki M, Takagi S, Nomiyama H, Schall TJ, Yoshie O (1997) Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell 91:521–530

    CAS  Google Scholar 

  4. Landsman L, Bar-On L, Zernecke A, Kim KW, Krauthgamer R, Shagdarsuren E, Lira SA, Weissman IL, Weber C, Jung S (2009) CX3CR1 is required for monocyte homeostasis and atherogenesis by promoting cell survival. Blood 113:963–972

    CAS  Google Scholar 

  5. Wu Z (2014) CX3CR1(+) B cells show immune suppressor properties. J Biol Chem 289:22630–22635

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhivaki D, Lemoine S, Lim A, Morva A, Vidalain PO, Schandene L, Casartelli N, Rameix-Welti MA, Herve PL, Deriaud E, Beitz B, Ripaux-Lefevre M, Miatello J, Lemercier B, Lorin V, Descamps D, Fix J, Eleouet JF, Riffault S, Schwartz O, Porcheray F, Mascart F, Mouquet H, Zhang X, Tissieres P, Lo-Man R (2017) Respiratory syncytial virus infects regulatory B cells in human neonates via chemokine receptor CX3CR1 and promotes lung disease severity. Immunity 46:301–314

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ferretti E, Bertolotto M, Deaglio S, Tripodo C, Ribatti D, Audrito V, Blengio F, Matis S, Zupo S, Rossi D, Ottonello L, Gaidano G, Malavasi F, Pistoia V, Corcione A (2011) A novel role of the CX3CR1/CX3CL1 system in the cross-talk between chronic lymphocytic leukemia cells and tumor microenvironment. Leukemia 25:1268–1277

    CAS  Google Scholar 

  8. Mionnet C, Buatois V, Kanda A, Milcent V, Fleury S, Lair D, Langelot M, Lacoeuille Y, Hessel E, Coffman R, Magnan A, Dombrowicz D, Glaichenhaus N, Julia V (2010) CX3CR1 is required for airway inflammation by promoting T helper cell survival and maintenance in inflamed lung. Nat Med 16:1305–1312

    CAS  Google Scholar 

  9. Ren H, Zhao T, Sun J, Wang X, Liu J, Gao S, Yu M, Hao J (2013) The CX3CL1/CX3CR1 reprograms glucose metabolism through HIF-1 pathway in pancreatic adenocarcinoma. J Cell Biochem 114:2603–2611

    CAS  Google Scholar 

  10. Liu JF, Tsao YT, Hou CH (2017) Fractalkine/CX3CL1 induced intercellular adhesion molecule-1-dependent tumor metastasis through the CX3CR1/PI3K/Akt/NF-kappaB pathway in human osteosarcoma. Oncotarget 8:54136–54148

    Google Scholar 

  11. Lee SJ, Namkoong S, Kim YM, Kim CK, Lee H, Ha KS, Chung HT, Kwon YG, Kim YM (2006) Fractalkine stimulates angiogenesis by activating the Raf-1/MEK/ERK- and PI3K/Akt/eNOS-dependent signal pathways. Am J Physiol Heart Circ Physiol 291:H2836–2846

    CAS  Google Scholar 

  12. Fumarola C, La Monica S, Alfieri RR, Borra E, Guidotti GG (2005) Cell size reduction induced by inhibition of the mTOR/S6K-signaling pathway protects Jurkat cells from apoptosis. Cell Death Differ 12:1344–1357

    CAS  Google Scholar 

  13. Lang CH, Frost RA (2005) Endotoxin disrupts the leucine-signaling pathway involving phosphorylation of mTOR, 4E-BP1, and S6K1 in skeletal muscle. J Cell Physiol 203:144–155

    CAS  Google Scholar 

  14. Fiano V, Ghimenti C, Imarisio S, Silengo L, Schiffer D (2004) PAkt, cyclin D1 and p27/Kip.1 in glioblastomas with and without EGFR amplification and PTEN mutation. Anticancer Res 24:2643–2647

    CAS  Google Scholar 

  15. Otero DC, Anzelon AN, Rickert RC (2003) CD19 function in early and late B cell development: I. Maintenance of follicular and marginal zone B cells requires CD19-dependent survival signals. J Immunol (Baltimore, Md. : 1950) 170:73–83

    CAS  Google Scholar 

  16. Thomas MD, Srivastava B, Allman D (2006) Regulation of peripheral B cell maturation. Cell Immunol 239:92–102

    CAS  Google Scholar 

  17. Pillai S, Cariappa A (2009) The follicular versus marginal zone B lymphocyte cell fate decision. Nat Rev Immunol 9:767–777

    CAS  Google Scholar 

  18. De S, Barnes BJ (2014) B cell transcription factors: potential new therapeutic targets for SLE. Clin Immunol (Orlando, Fla.) 152:140–151

    CAS  Google Scholar 

  19. Cariappa A, Tang M, Parng C, Nebelitskiy E, Carroll M, Georgopoulos K, Pillai S (2001) The follicular versus marginal zone B lymphocyte cell fate decision is regulated by Aiolos, Btk, and CD21. Immunity 14:603–615

    CAS  Google Scholar 

  20. Liu W, Meckel T, Tolar P, Sohn HW, Pierce SK (2010) Intrinsic properties of immunoglobulin IgG1 isotype-switched B cell receptors promote microclustering and the initiation of signaling. Immunity 32:778–789

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Tolar P, Hanna J, Krueger PD, Pierce SK (2009) The constant region of the membrane immunoglobulin mediates B cell-receptor clustering and signaling in response to membrane antigens. Immunity 30:44–55

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Tolar P, Sohn HW, Pierce SK (2005) The initiation of antigen-induced B cell antigen receptor signaling viewed in living cells by fluorescence resonance energy transfer. Nat Immunol 6:1168–1176

    CAS  Google Scholar 

  23. Mattila PK, Feest C, Depoil D, Treanor B, Montaner B, Otipoby KL, Carter R, Justement LB, Bruckbauer A, Batista FD (2013) The actin and tetraspanin networks organize receptor nanoclusters to regulate B cell receptor-mediated signaling. Immunity 38:461–474

    CAS  Google Scholar 

  24. Treanor B, Depoil D, Gonzalez-Granja A, Barral P, Weber M, Dushek O, Bruckbauer A, Batista FD (2010) The membrane skeleton controls diffusion dynamics and signaling through the B cell receptor. Immunity 32:187–199

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu C, Bai X, Wu J, Sharma S, Upadhyaya A, Dahlberg CI, Westerberg LS, Snapper SB, Zhao X, Song W (2013) N-wasp is essential for the negative regulation of B cell receptor signaling. PLoS Biol 11:e1001704

    PubMed  PubMed Central  Google Scholar 

  26. Hao S, August A (2005) Actin depolymerization transduces the strength of B-cell receptor stimulation. Mol Biol Cell 16:2275–2284

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Seeley-Fallen MK, Liu LJ, Shapiro MR, Onabajo OO, Palaniyandi S, Zhu X, Tan TH, Upadhyaya A, Song W (2014) Actin-binding protein 1 links B-cell antigen receptors to negative signaling pathways. Proc Natl Acad Sci USA 111:9881–9886

    CAS  Google Scholar 

  28. Sharma S, Orlowski G, Song W (2009) Btk regulates B cell receptor-mediated antigen processing and presentation by controlling actin cytoskeleton dynamics in B cells. J Immunol (Baltimore Md. : 1950) 182:329–339

    CAS  Google Scholar 

  29. Huang L, Zhang Y, Xu C, Gu X, Niu L, Wang J, Sun X, Bai X, Xuan X, Li Q, Shi C, Yu B, Miller H, Yang G, Westerberg LS, Liu W, Song W, Zhao X, Liu C (2017) Rictor positively regulates B cell receptor signaling by modulating actin reorganization via ezrin. PLoS Biol 15:e2001750

    PubMed  PubMed Central  Google Scholar 

  30. Pore D, Huang E, Dejanovic D, Parameswaran N, Cheung MB, Gupta N (2018) Cutting edge: deletion of Ezrin in B cells of lyn-deficient mice downregulates lupus pathology. J Immunol 201:1353–1358

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Pore D, Matsui K, Parameswaran N, Gupta N (2016) Cutting edge: Ezrin regulates inflammation by limiting B cell IL-10 production. J Immunol 196:558–562

    CAS  Google Scholar 

  32. Treanor B, Depoil D, Bruckbauer A, Batista FD (2011) Dynamic cortical actin remodeling by ERM proteins controls BCR microcluster organization and integrity. J Exp Med 208:1055–1068

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Parameswaran N, Enyindah-Asonye G, Bagheri N, Shah NB, Gupta N (2013) Spatial coupling of JNK activation to the B cell antigen receptor by tyrosine-phosphorylated ezrin. J Immunol 190:2017–2026

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Pore D, Gupta N (2015) The ezrin-radixin-moesin family of proteins in the regulation of B-cell immune response. Crit Rev Immunol 35:15–31

    PubMed  PubMed Central  Google Scholar 

  35. Dichmann S, Herouy Y, Purlis D, Rheinen H, Gebicke-Harter P, Norgauer J (2001) Fractalkine induces chemotaxis and actin polymerization in human dendritic cells. Inflamm Res 50:529–533

    CAS  Google Scholar 

  36. Ha N, Pham DH, Shahsafaei A, Naruse C, Asano M, Thai TH (2014) HP-1gamma controls high-affinity antibody response to T-dependent antigens. Front Immunol 5:271

    PubMed  PubMed Central  Google Scholar 

  37. Domeier PP, Schell SL, Rahman ZS (2017) Spontaneous germinal centers and autoimmunity. Autoimmunity 50:4–18

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu C, Miller H, Hui KL, Grooman B, Bolland S, Upadhyaya A, Song W (2011) A balance of Bruton’s tyrosine kinase and SHIP activation regulates B cell receptor cluster formation by controlling actin remodelling. J Immunol (Baltimore Md.: 1950) 187:230–239

    CAS  Google Scholar 

  39. Smith TG, Robbins PA, Ratcliffe PJ (2008) The human side of hypoxia-inducible factor. Br J Haematol 141:325–334

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wilkins SE, Abboud MI, Hancock RL, Schofield CJ (2016) Targeting Protein-Protein Interactions in the HIF System. ChemMedChem 11:773–786

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Rozen-Zvi B, Hayashida T, Hubchak SC, Hanna C, Platanias LC, Schnaper HW (2013) TGF-beta/Smad3 activates mammalian target of rapamycin complex-1 to promote collagen production by increasing HIF-1alpha expression. Am J Physiol Renal Physiol 305:F485–494

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Shulby SA, Dolloff NG, Stearns ME, Meucci O, Fatatis A (2004) CX3CR1-fractalkine expression regulates cellular mechanisms involved in adhesion, migration, and survival of human prostate cancer cells. Can Res 64:4693–4698

    CAS  Google Scholar 

  43. Gaudin F, Nasreddine S, Donnadieu AC, Emilie D, Combadiere C, Prevot S, Machelon V, Balabanian K (2011) Identification of the chemokine CX3CL1 as a new regulator of malignant cell proliferation in epithelial ovarian cancer. PLoS ONE 6:e21546

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Saitoh Y, Koizumi K, Sakurai H, Minami T, Saiki I (2007) RANKL-induced down-regulation of CX3CR1 via PI3K/Akt signaling pathway suppresses Fractalkine/CX3CL1-induced cellular responses in RAW264.7 cells. Biochem Biophys Res Commun 364:417–422

    CAS  Google Scholar 

  45. El-Shazly AE, Doloriert HC, Bisig B, Lefebvre PP, Delvenne P, Jacobs N (2013) Novel cooperation between CX3CL1 and CCL26 inducing NK cell chemotaxis via CX3CR1: a possible mechanism for NK cell infiltration of the allergic nasal tissue. Clin Exp Allergy 43:322–331

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Natural Science Foundation of China (81861138002, 81722002 and 31970839) and the start-up funding from Huazhong University of Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

NL and PJ drafted the initial manuscript. CL designed the research, reviewed and revised the manuscript. AC performed the TRIFm experiments, XL and NL performed Seahorse experiments. NL and YJ performed the confocal experiments. NL, YJ, LY, PJ, DK, JL, JC, QC carried out the flow cytometry assay, ELISA, and Western blotting. NL analyzed the data and generated figures. JJ, HM, LW, CW, QG assisted with the manuscript. All authors approved the final manuscript as submitted and agreed to be accountable for all aspects of the work.

Corresponding authors

Correspondence to Quan Gong or Chaohong Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PPT 1278 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Jiang, P., Chen, A. et al. CX3CR1 positively regulates BCR signaling coupled with cell metabolism via negatively controlling actin remodeling. Cell. Mol. Life Sci. 77, 4379–4395 (2020). https://doi.org/10.1007/s00018-019-03416-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03416-7

Keywords

Navigation