Skip to main content
Log in

Light and electron-microscopic immunocytochemistry and lectin histochemistry of the subcommissural organ: Evidence for processing of the secretory material

  • Published:
Cell and Tissue Research Aims and scope

Summary

The subcommissural organ (SCO) of the rat was investigated by use of histochemical and immunocytochemical methods at the light and electron-microscopic levels. Consecutive thin methacrylate sections were stained with the pseudoisocyanin (Psi), immunoperoxidase (IMC; employing an antiserum against Reissner's fiber, AFRU), periodic acid-Schiff (PAS) and periodic acid-silver methenamine (SM) techniques, and reacted with six types of lectins. Psi, SM, concanavalin A (Con A) and IMC were also used for double and triple sequential staining of the same section. Increasing dilutions of AFRU (from 1∶1000 to 1∶200 000) were used for immunostaining of serial paraffin sections. In addition, ultrastructural localization of (i) Con A-binding sites and (ii) immunoreactive secretory material was performed. Some of these procedures were also applied to the ophidian and canine SCO.

Con A-positive, Psi-positive and immunoreactive materials coexisted within the same cisternae of the rough endoplasmic reticulum. The Golgi apparatus lacked Con A-positive and immunoreactive substances. Apical secretory granules and secreted material lying on the surface of the SCO showed (i) the highest affinity for AFRU, but were (ii) Con A-negative, and (iii) wheat-germ agglutinin-, PAS and SM-positive. Reissner's fiber displayed a low affinity for AFRU.

It is suggested that the SCO secretes N-linked glycoproteins, the carbohydrate and protein moeities of which undergo (i) a maturation process before being released, and (ii) some kind of modification(s) after their release into the ventricle. The perivascular secretory cells of the dog SCO might secrete a material different from that secreted by the ependymal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alroy J, Orgad U, Ucci AA, Pereira MEA (1984) Identification of glycoprotein storage disease by lectins: A new diagnostic method. J Histochem Cytochem 32:1280–1284

    Google Scholar 

  • Bargmann W, Schiebler TH (1952) Histologische und cytochemische Untersuchungen am Subcommissuralorgan von Säugern. Z Zellforsch 37:583–596

    Google Scholar 

  • Castel M, Hochman J (1976) Ultrastructural immunohistochemical localization of vasopressin in the hypothalamic-neurohypophysial system of three murids. Cell Tissue Res 174:69–81

    Google Scholar 

  • Diederen JHB (1970) The subcommissural organ of Rana temporaria L. A cytological, cytochemical, cytoenzymological and electronmicroscopical study. Z Zellforsch 111:379–403

    Google Scholar 

  • Fischer J, Klein PJ, Vierbuchen M, Skutta B, Uhlenbruck G, Fischer R (1984) Characterization of glycoconjugates of human gastrointestinal mucosa by lectins. J Histochem Cytochem 32:681–689

    Google Scholar 

  • Geleff S, Böck P (1984) Pancreatic duct glands. II. Lectin binding affinities of ductular epithelium, ductular glands, and Brunner glands. Histochemistry 80:3138

    Google Scholar 

  • Glabe CG, Hanover JT, Lennarz WJ (1980) Glycosylation of ovalbumin nascent chains: the spatial relationship between translation and glycosylation. J Biol Chem 255:9236–9242

    Google Scholar 

  • Goldstein U, Mayes CE (1978) The lectins: Carbohydrate binding proteins of plants and animals. Adv Carbohydr Chem Biochem 35:127–340

    Google Scholar 

  • Goldstein U, Reichert CHM, Misaki A (1974) Interaction of concanavalin A with model substrates. Ann NY Acad Sci 234:283–295

    Google Scholar 

  • Hickman S, Theodorakis JL, Greco JM, Brown PH (1984) Processing of MOPC 315 immunoglobulin A oligosaccharides: evidence for endoplasmic reticulum and trans Golgi α1,2-mannosidase activity. J Cell Biol 98:407–416

    Google Scholar 

  • Hubbard SC, Ivatt RJ (1981) Synthesis and processing of asparagine-linked oligosaccharides. Ann Rev Biochem 50:555–583

    Google Scholar 

  • Hunt LA (1979) Biosynthesis and maturation of cellular membrane glycoproteins. J Supramol Struct 12:209–226

    Google Scholar 

  • Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol 27:49A

    Google Scholar 

  • Krstić R (1973) Ultrastrukturelle Lokalisation von Mukosubstanzen der Zellhülle im Subcommissuralorgan der Ratte. Z Zellforsch 139:237–252

    Google Scholar 

  • Li Chen I, Lu KS, Lin HS (1973) Electron microscopic and cytochemical studies of the mouse subcommissural organ. Z Zellforsch 139:217–236

    Google Scholar 

  • Lösecke W, Naumann W, Sterba G (1984) Preparation and discharge of secretion in the subcommissural organ of the rat. Cell Tissue Res 235:201–206

    Google Scholar 

  • Mazzi V (1952) Caratteri secretori nelle cellule dell'organo sottocommissurale dei vertebrati inferiori. Arch Zool Ital 37:445–464

    Google Scholar 

  • Meiniel R, Meiniel A (1985) Analysis of the secretions of the subcommissural organs of several vertebrate species by use of fluorescent lectins. Cell Tissue Res 239:359–364

    Google Scholar 

  • Møllgard K (1972) Histochemical investigations on the human foetal subcommissural organ. I. Carbohydrates and mucosubstances, proteins and nucleoproteins, esterase, acid and alkaline phosphatase. Histochemie 32:31–48

    Google Scholar 

  • Montreuil J (1980) Primary structure of glycoprotein glycans. Basis for the molecular biology of glycoproteins. Adv Carbohydr Chem Biochem 37:157–221

    Google Scholar 

  • Naumann W (1968) Histochemische Untersuchungen am Subcommissuralorgan und am Reissnerschen Faden von Lampetra planeri (Bloch). Z Zellforsch 87:571–591

    Google Scholar 

  • Oksche A (1954) Über die Art und Bedeutung sekretorischer Zelltätigkeit in der Zirbel und im Subkommissuralorgan. Verh Anat Ges (Jena) 52:88–96

    Google Scholar 

  • Oksche A (1956) Funktionelle histologische Untersuchungen über die Organe des Zwischenhirndaches der Chordaten. Anat Anz 102:404–419

    Google Scholar 

  • Oksche A (1962) Histologische, histochemische und experimentelle Studien am Subkommissuralorgan von Anuren (mit Hinweisen auf den Epiphysenkomplex). Z Zellforsch 57:240–326

    Google Scholar 

  • Oksche A (1969) The subcommissural organ. J Neuro-Visc Relat [Suppl] 9:111–139

    Google Scholar 

  • Pearse AGE (1980) Histochemistry. Theoretical and applied. London J and A Churchill Ltd

    Google Scholar 

  • Pino RM (1984) Ultrastructural localization of lectin receptors on the surface of the rat retinal pigment epithelium. Decreased sensitivity of the avidin-biotin method due to cell surface charge. J Histochem Cytochem 32:862–868

    Google Scholar 

  • Platt JL, Michael AF (1983) Retardation of fading and enhancement of intensity of immunofluorescence by p-phenylenediamine. J Histochem Cytochem 31:840–842

    Google Scholar 

  • Podell SB, Vacquier VD (1984) Wheat germ agglutinin blocks the acrosome reaction in Strongylocentrotus purpuratus sperm by binding a 210,000-mol-wt membrane protein. J Cell Biol 99:1598–1604

    Google Scholar 

  • Rambourg A (1967) An improved silver methenamine technique for the detection of periodic acid-reactive complex carbohydrates with the electron microscope. J Histochem Cytochem 15:409–412

    Google Scholar 

  • Rodriguez EM (1970) Ependymal specializations. II. Ultrastructural aspects of the apical secretion of the toad subcommissural organ. Z Zellforsch 111: 15–31

    Google Scholar 

  • Rodriguez EM, Oksche A, Hein S, Rodriguez S, Yulis R (1984a) Comparative immunocytochemical study of the subcommissural organ. Cell Tissue Res 237:427–441

    Google Scholar 

  • Rodriguez EM, Oksche A, Hein S, Rodriguez S, Yulis R (1984b) Spatial and structural interrelationships between secretory cells of the subcommissural organ and blood vessels. An immunocytochemical study. Cell Tissue Res 237:443–449

    Google Scholar 

  • Rodriguez EM, Yulis R, Peruzzo B, Alvial G, Andrade R (1984c) Standardization of various applications of methacrylate embedding and silver methenamine for light and electron microscopy immunocytochemistry. Histochemistry 81:253–263

    Google Scholar 

  • Rodriguez EM, Peruzzo B, Yulis R (1984d) Immunocytochemical evidence of the processing of neurohypophyseal peptides. Proc XV Meet Lat Amer Soc Physiol Sci R105

  • Roth J (1978) The lectins: Molecular probes in cell biology and membrane research. Exp Pathol (Suppl) 3:1–180

    Google Scholar 

  • Stanka P, Schwink A, Wetzstein R (1964) Elektronenmikroskopische Untersuchungen des Subcommissuralorgans der Ratte. Z Zellforsch 63:277–301

    Google Scholar 

  • Staneloni RJ, Leloir LF (1982) The biosynthetic pathway of the asparagine-linked oligosaccharides of glycoproteins. CRC Crit-ical Review in Biochemistry 12:289–326

    Google Scholar 

  • Sterba G, Weiss J (1967) Beiträge zur Hydrencephalokrinie: I. Hypothalamische Hydrencephalokrinie der Bachforelle (Salmo trutta fario). J Hirnforsch 9:359–371

    Google Scholar 

  • Sterba G, Wolf G (1969) Vorkommen und Funktion der Sialinsäure im Reissnerschen Faden. Histochemie 17:57–63

    Google Scholar 

  • Sterba G, Kießig Chr, Naumann W, Petter H, Kleim I (1982) The secretion of the subcommissural organ. A comparative immunocytochemical investigation. Cell Tissue Res 226:427–439

    Google Scholar 

  • Sofroniew MV, Weindl A, Schinko I, Wetzstein R (1979) The distribution of vasopressin-, oxytocin-, and neurophysin-producing neurons in the guinea pig brain: I. The classical hypothalamo-neurohypophyseal system. Cell Tissue Res 197:367–384

    Google Scholar 

  • Sternberger LA, Hardy PH, Jr Cuculis JJ, Meyer HG (1970) The unlabeled antibody enzyme method of immunohistochemistry. Preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-anti peroxidase) and its use in identification of spirochetes. J Histochem Cytochem 18:315–333

    Google Scholar 

  • Stutinsky F (1950) Colloïde, corps de Herring et substance Gomori-positive de la neurohypophyse. CR Soc Biol (Paris) 144:1357–1360

    Google Scholar 

  • Wakahara M (1974) An ultrastructural study of the subcommissural organ cells of the African clawed toad, Xenopus laevis. Cell Tissue Res 152:239–252

    Google Scholar 

  • Wingstrand KG (1953) Neurosecretion and antidiuretic activity in chick embryos with remarks on the subcommissural organ. Ark Zool (Stockh) 6:41–67

    Google Scholar 

  • Winzler RJ (1973) The chemistry of glycoproteins. In: Hormonal Proteins and Peptides. Ed Ch H Li, vol 1, pp 1–15

  • Wislocki GB, Leduc EH (1952) The cytology and histochemistry of the subcommissural organ and Reissner's fiber in the rodents. J Comp Neurol 97:515–544

    Google Scholar 

  • Zilberstein A, Snider MD, Porter M, Lodish NF (1980) Mutants of vesicular stomatitis virus blocked at different stages in maturation of the viral glycoprotein. Cell 21:417–427

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by Grant I/38 259 from the Stiftung Volkswagenwerk, Federal Republic of Germany, and Grant RS-82-18 from the Direction de Investigaciones, Universidad Austral de Chile. The authors wish to thank Mrs. Elizabeth Santibáñez, Mr. Genaro Alvial and Mr. Luis Delannoy (Valdivia), and Mrs. Ragnhild Momberger (Giessen) for valuable technical cooperation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez, E.M., Herrera, H., Peruzzo, B. et al. Light and electron-microscopic immunocytochemistry and lectin histochemistry of the subcommissural organ: Evidence for processing of the secretory material. Cell Tissue Res. 243, 545–559 (1986). https://doi.org/10.1007/BF00218061

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00218061

Key words

Navigation