Skip to main content
Log in

Pigment movements in fish melanophores: Morphological and physiological studies

III. The effects of colchicine and vinblastine

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

The antimitotic drugs colchicine and vinblastine were applied to the melanophores of isolated scales of Pterophyllum scalare. The time course of inhibition of pigment migrations was studied quantitatively with the photoelectric method.

Within one hour of treatment with 5 mM colchicine, a partial and reversible inhibition of pigment movements is obtained. During this time, the number of microtubules per cell process does not differ significantly from controls when pigment is dispersed. However, their number increases concomitantly with the decrease in rate of aggregation induced by KCl up to about the same value as in dispersed pigment cells. This indicates a close connection between pigment movements and the microtubule turnover known to occur in angelfish melanophores.

When applied in a concentration of 0,2 mM, vinblastine has a total and irreversible effect on pigment movements, with an especially rapid and profound inhibition of pigment dispersion. The fine structure of vinblastine-treated melanophores is characterized by an almost complete loss of microtubules and the appearance of crystalloid bodies, which differ in fine structure from vinblastine-induced crystals of all other cell types so far examined. Possibly their peculiar structure is related to special properties of melanophore microtubules, such as rapid turnover and relatively high resistance to colchicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, M., Warr, J. R.: Colchicine resistant mutants of Chlamydomonas reinhardi. Exp. Cell Res. 71, 473–475 (1972)

    Google Scholar 

  • Aronson, J., Inoué, S.: Reversal by light of the action of N-methyl-N-desacytyl colchicine on mitosis. J. Cell Biol. 45, 470–477 (1970)

    Google Scholar 

  • Behnke, O.: A comparative study of microtubules of disk-shaped blood cells. J. Ultrastruct. Res. 31, 61–75 (1970)

    Google Scholar 

  • Behnke, O., Forer, A.: Evidence for four classes of microtubules in individual cells. J. Cell Sci. 2, 169–192 (1967)

    Google Scholar 

  • Bensch, K. G., Malawista, S. E.: Microtubule crystals: a new biophysical phenomenon induced by vinca alkaloids. Nature (Lond.) 218, 1176–1177 (1968)

    Google Scholar 

  • Bensch, K. G., Malawista, S. E.: Microtubular crystals in mammalian cells. J. Cell Biol. 40, 95–107 (1969)

    Google Scholar 

  • Bhisey, A. N., Freed, J. J.: Ameboid movement induced in cultured macrophages by colchicine or vinblastine Exp. Cell Res. 64, 419–429 (1971)

    Google Scholar 

  • Bikle, D., Tilney, L. G., Porter, K. R.: Microtubules and pigment migration in the melanophores of Fundulus heteroclitus L. Protoplasma (Wien) 61, 322–345 (1966)

    Google Scholar 

  • Borisy, G. G., Taylor, E. W.: The mechanism of action of colchicine. Colchicine binding to sea urchin eggs and the mitotic apparatus. J. Cell Biol. 34, 535–548 (1967a)

    Google Scholar 

  • Borisy, G. G., Taylor, E. W.: The mechanism of action of colchinine. Binding of colchicine-3H to cellular protein. J. Cell Biol. 34, 525–533 (1967b)

    Google Scholar 

  • Brinkley, B. R., Stubblefield, E., Hsu, T. E.: The effects of colcemid inhibition and reversal on the fine structure of the mitotic apparatus of chinese hamster cells in vitro. J. Ultrastruct. Res. 19, 1–18 (1967)

    Google Scholar 

  • Bryan, J.: Definition of three classes of binding sites in isolated microtubule crystals. Biochemistry 11, 2611–2615 (1972)

    Google Scholar 

  • Burton, P. R.: Effects of various treatments on microtubules and axial units of lung-fluke spermatozoa. Z. Zellforsch. 87, 226–248 (1968)

    Google Scholar 

  • Byers, B., Porter, K. R.: Oriented microtubules in elongating cells of the developing lens rudiment after induction. Proc. nat. Acad. Sci. (Wash.) 52, 1091–1099 (1964)

    Google Scholar 

  • Egner, O.: Zur Physiologie der Melanosomenverlagerung in den Melanophoren von Pterophyllum scalare Cuv. & Val. Cytobiologie 4, 262–292 (1971)

    Google Scholar 

  • Fawcett, D.: Die Zelle. Ein Atlas der Ultrastruktur. München: Urban & Schwarzenberg 1969

    Google Scholar 

  • Fernandez, H. L., Huneeus, F. C., Davison, P. F.: Studies on the mechanism of axoplasmic transport in the crayfish cord. J. Neurobiol. 1, 395–409 (1970)

    Google Scholar 

  • Flament-Durand, J., Dustin, P.: Studies on the transport of secretory granules in the magnocellular hypothalamic neurons. Z. Zellforsch. 130, 440–454 (1972)

    Google Scholar 

  • Freed, J. J., Lebowitz, M. M.: The association of a class of saltatory movements with microtubules in cultured cells. J. Cell Biol. 45, 334–354 (1970)

    Google Scholar 

  • Fujii, R., Novales, R. R.: The nervous mechanism controlling pigment aggregation in Fundulus melanophores. Comp. Biochem. Physiol. 29, 109–124 (1969)

    Google Scholar 

  • Goldman, R. D., Follet, R.A.C.: The structure of the major cell processes of isolated BHK 21 fibroblasts. Exp. Cell Res. 57, 163–176 (1969)

    Google Scholar 

  • Green, L.: Mechanism of movements of granules in melanocytes of Fundulus heteroclitus. Proc. nat. Acad. Sci. (Wash.) 59, 1179–1186 (1968)

    Google Scholar 

  • Handel, M. A., Roth, L. E.: Cell shape and morphology of the neural tube: implications for microtubule function. Develop. Biol. 25, 78–95 (1971)

    Google Scholar 

  • Hauser, M.: Differentielles Kontrastverhalten verschiedener Mikrotubulisysteme nach Mercury Orange-Behandlung. Cytobiologie 6, 367–381 (1972)

    Google Scholar 

  • Hill, A. V., Parkinson, J. L., Solandt, D. Y.: Photoelectric records of the color change in Fundulus heteroclitus. J. exp. Biol. 12, 397–399 (1935)

    Google Scholar 

  • Hirano, A., Zimmerman, H. M.: Some effects of vinblastine implantation in the cerebral white matter. Lab. Invest. 23, 358–367 (1970)

    Google Scholar 

  • Junqueira, L. C., Porter, K. R.: Pigment migration in Fundulus melanophores. Biophys. J. 9, A 152 (1969)

    Google Scholar 

  • Karlsson, J.-O., Hansson, H.-A., Sjöstrand, J.: Effect of colchicine on axonal transport and morphology of retinal ganglion cells. Z. Zellforsch. 115, 265–283 (1971)

    Google Scholar 

  • Kram, R., Tomkins, G. M.: Pleiotypic control by cyclic AMP: Interaction with cyclic GMP and possible role of microtubules. Proc. nat. Acad. Sci. (Wash.) 70, 1659–1663 (1973)

    Google Scholar 

  • Kreutzberg, G. W.: Neuronal dynamics and axonal flow. IV. Blockage of intraaxonal enzyme transport by colchicine. Proc. nat. Acad. Sci. (Wash.) 62, 722–728 (1969)

    Google Scholar 

  • Krishan, A., Hsu, D.: Observations on the association of helical polyribosomes and filaments with vincristine-induced crystals in Earle's L-cell fibroblasts. J. Cell Biol. 43, 553–563 (1969)

    Google Scholar 

  • Ledbetter, M. C., Porter, K. R.: A “microtubule” in plant cell fine structure. J. Cell Biol. 19, 239–250 (1963)

    Google Scholar 

  • Lettré, R., Paweletz, N., Werner, D., Granzow, C.: Sublines of the Ehrlich-Lettré mouse ascites tumor. A new tool of experimental cell research. Naturwissenschaften 59, 59–63 (1972)

    Google Scholar 

  • Malawista, S. E.: On the action of colchicine. The melanocyte model. J. exp. Med. 122, 361–384 (1965)

    Google Scholar 

  • Malawista, S. E.: The melanocyte model. Colchicine-like effects of other antimitotic agents. J. Cell Biol. 49, 848–855 (1971)

    Google Scholar 

  • Malawista, S. E., Sato, H., Bensch, K. G.: Vinblastine and griseo-fulvine reversibly disrupt the living mitotic spindle. Science 160, 770–772 (1968)

    Google Scholar 

  • Marantz, R., Shelanski, M. L.: Structure of microtubular crystals induced by vinblastine in vitro. J. Cell Biol. 48, 234–238 (1970)

    Google Scholar 

  • Margulis, L.: Colchicine-sensitive microtubules. Int. Rev. Cytol. 34, 333–362 (1973)

    Google Scholar 

  • Nagayama, A., Dales, S.: Rapid purification and the immunological specifity of mammalian microtubular paracrystals possessing an ATPase activity. Proc. nat. Acad. Sci. (Wash.) 66, 464–471 (1970)

    Google Scholar 

  • Robbins, E., Gonatas, N. K.: Histochemical and ultrastructural studies on HeLa cell cultures exposed to spindle inhibitors with special reference to the interphase cell. J. Histochem. Cytochem. 12, 704–711 (1964)

    Google Scholar 

  • Rosenbaum, J. L., Carlson, K.: Cilia regeneration in Tetrahymena and its inhibition by colchicine. J. Cell Biol. 40, 415–425 (1969)

    Google Scholar 

  • Roth, L. E., Pihlaja, D. J., Shigenaka, Y.: Microtubules in the heliozoan axopodium. I. The gradion hypothesis of allosterism in structural proteins. J. Ultrastruct. Res. 30, 7–37 (1970)

    Google Scholar 

  • Samson, F. E.: Mechanism of axoplasmic transport. J. Neurobiol. 2, 347–360 (1971)

    Google Scholar 

  • Schliwa, M., Bereiter-Hahn, J.: Morphologische und physiologische Grundlagen der Pigment-bewegung in Fisch-Melanophoren. I. Methodik der Bewegungsanalyse. Microscopica Acta 75, in press (1973a)

  • Schliwa, M., Bereiter-Hahn, J.: Pigment movements in fish melanophores: morphological and physiological studies. II. Cell shape and microtubules. Z. Zellforsch., in press (1973b)

  • Stebbings, H.: Influence of vinblastine sulphate on the deployment of microtubules and ribosomes in telotrophic ovarioles. J. Cell Sci. 8, 111–125 (1971)

    Google Scholar 

  • Steinman, R. M.: Inhibitory effects of colchicine on ciliogenesis in ectoderm of Xenopus laevis. J. Ultrastruct. Res. 30, 423–440 (1970)

    Google Scholar 

  • Taylor, E. W.: The mechanism of colchicine inhibition of mitosis. I. Kinetics of inhibition and the binding of H3-colchicine. J. Cell Biol. 25, 145–160 (1965)

    Google Scholar 

  • Tilney, L. G.: The assembly of microtubules and their role in the development of cell form. Develop. Biol., Suppl. 2, 63–102 (1968)

    Google Scholar 

  • Tilney, L. G.: Origin and continuity of microtubules. In: J. Reinert, H. Ursprung (eds.), Origin and continuity of cell organelles, p. 222–260. Berlin-Heidelberg-New York: Springer 1971

    Google Scholar 

  • Tilney, L. G., Porter, K. R.: Studies on the microtubules in Heliozoa. II. The effect of low temperature on these structures in the formation and maintenance of the axopodia. J. Cell Biol. 34, 327–343 (1967)

    Google Scholar 

  • Wagner, R. C., Rosenberg, M. D.: Endocytosis in Chang liver cells: the role of microtubules in vacuole orientation and movement. Cytobiologie 7, 20–27 (1973)

    Google Scholar 

  • Weisenberg, R. C., Borisy, G. G., Taylor, E. W.: The colchicine-binding protein of mammalian brain and its relation to microtubules. Biochemistry 7, 4466–4479 (1968)

    Google Scholar 

  • Werner, D., Dönges, K. H.: Chemie und Wirkungsmechanismus des Colchicins und seiner Derivate. Planta Medica 22, 306–315 (1972)

    Google Scholar 

  • Wikswo, M., Novales, R. R.: The effect of colchicine on migration of pigment granules in the melanophores of Fundulus heteroclitus. Biol. Bull. 137, 228–237 (1969)

    Google Scholar 

  • Wikswo, M., Novales, R. R.: Effect of colchicine on microtubules in the melanophores of Fundulus heteroclitus. J. Ultrastruct. Res. 41, 189–201 (1972)

    Google Scholar 

  • Wilson, L.: Properties of colchicine binding protein from chick embryo brain. Interactions with Vinca alkaloids and podophyllotoxin. Biochemistry 9, 4999–5007 (1970)

    Google Scholar 

  • Wisniewski, H., Shelanski, M. L., Terry, R. D.: Effects of mitotic spindle inhibitors on neurotubules and neurofilaments in anterior horn cells. J. Cell Biol. 38, 224–229 (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by a grant from the Deutsche Forschungsgemeinschaft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schliwa, M., Bereiter-Hahn, J. Pigment movements in fish melanophores: Morphological and physiological studies. Z.Zellforsch 147, 127–148 (1973). https://doi.org/10.1007/BF00306604

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00306604

Key words

Navigation