Skip to main content
Log in

Olfactory pathway in Xibalbanus tulumensis: remipedian hemiellipsoid body as homologue of hexapod mushroom body

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The Remipedia have been proposed to be the crustacean sister group of the Hexapoda. These blind cave animals heavily rely on their chemical sense and are thus rewarding subjects for the analysis of olfactory pathways. The evolution of these pathways as a character for arthropod phylogeny has recently received increasing attention. Here, we investigate the situation in Xibalbanus tulumensis by focal dye injections and immunolabelling of the catalytic subunit of the cAMP-dependent protein kinase (DC0), an enzyme particularly enriched in insect mushroom bodies. DC0 labelling of the hemiellipsoid body suggests its subdivision into a cap-like and a core neuropil. Immunofluorescence of the enzyme glutamic acid decarboxylase (GAD), which synthesizes γ-aminobutyric acid (GABA), has revealed a cluster of GABAergic interneurons in the hemiellipsoid body, reminiscent of the characteristic feedback neurons of the mushroom body. Thus, the hemiellipsoid body of Xibalbanus shares many of the characteristics of insect mushroom bodies. Nevertheless, the general neuroanatomy of the olfactory pathway in the Remipedia strongly corresponds to the malacostracan ground pattern. Given that the Remipedia are probably the sister group of the Hexapoda, the phylogenetic appearance of the typical neuropilar compartments in the insect mushroom body has to be assigned to the origins of the Hexapoda.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andrew DR, Brown SM, Strausfeld NJ (2012) The minute brain of the copepod Tigriopus californicus supports a complex ancestral ground pattern of the tetraconate cerebral nervous systems. J Comp Neurol 520:3446–3470

    Article  PubMed  Google Scholar 

  • Becker KF, Schott C, Hipp S, Metzger V, Porschewski P, Beck R, Nährig J, Becker I, Höfler H (2007) Quantitative protein analysis from formalin-fixed tissues: implications for translational clinical research and nanoscale molecular diagnosis. J Pathol 211:370–378

    Article  CAS  PubMed  Google Scholar 

  • Bicker G, Schäfer S, Kingan T (1985) Mushroom body feedback interneurones in the honeybee show GABA-like immunoreactivity. Brain Res 360:394–397

    Article  CAS  PubMed  Google Scholar 

  • Böhm A, Szucsich NU, Pass G (2012) Brain anatomy in Diplura (Hexapoda). Front Zool 9:26

    Article  PubMed Central  PubMed  Google Scholar 

  • Brenneis G, Richter S (2010) Architecture of the nervous system in Mystacocarida (Arthropoda, Crustacea)—an immunohistochemical study and 3D-reconstruction. J Morphol 271:169–189

    PubMed  Google Scholar 

  • Brotz TM, Bochenek B, Aronstein K, Ffrench-Constant RH, Borst A (1997) γ-Aminobutyric acid receptor distribution in the mushroom bodies of a fly (Calliphora erythrocephala): a functional subdivision of Kenyon cells? J Comp Neurol 383:42–48

    Article  CAS  PubMed  Google Scholar 

  • Brown S, Wolff G (2012) Fine structural organization of the hemiellipsoid body of the land hermit crab, Coenobita clypeatus. J Comp Neurol 520:2847–2863

    Article  PubMed  Google Scholar 

  • Christie AE (2014) Prediction of the first neuropeptides from a member of the Remipedia (Arthropoda, Crustacea). Gen Comp Endocrinol 201:74–86

    Article  CAS  PubMed  Google Scholar 

  • Eickhoff R, Bicker G (2012) Developmental expression of cell recognition molecules in the mushroom body and antennal lobe of the locust Locusta migratoria. J Comp Neurol 520:2021–2040

    Article  CAS  PubMed  Google Scholar 

  • Eisenhardt D, Fiala A, Braun P, Rosenboom H, Kress H, Ebert PR, Menzel R (2001) Cloning of a catalytic subunit of cAMP-dependent protein kinase from the honeybee (Apis mellifera) and its localization in the brain. Insect Mol Biol 10:173–181

    Article  CAS  PubMed  Google Scholar 

  • Ertas B, Reumont BM von, Wägele JW, Misof B, Burmester T (2009) Hemocyanin suggests a close relationship of Remipedia and Hexapoda. Mol Biol Evol 26:2711–2718

  • Fanenbruck M, Harzsch S (2005) A brain atlas of Godzilliognomus frondosus Yager, 1989 (Remipedia, Godzilliidae) and comparison with the brain of Speleonectes tulumensis Yager, 1987 (Remipedia, Speleonectidae): implications for arthropod relationships. Arthropod Struct Dev 34:343–378

    Article  Google Scholar 

  • Fanenbruck M, Harzsch S, Wägele JW (2004) The brain of the Remipedia (Crustacea) and an alternative hypothesis on their phylogenetic relationships. Proc Natl Acad Sci U S A 101:3868–3873

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Farris SM (2005) Evolution of insect mushroom bodies: old clues, new insights. Arthropod Struct Dev 34:211–234

    Article  Google Scholar 

  • Farris SM, Sinakevitch I (2003) Development and evolution of the insect mushroom bodies: towards the understanding of conserved developmental mechanisms in a higher brain center. Arthropod Struct Dev 32:79–101

    Article  PubMed  Google Scholar 

  • Farris SM, Abrams AI, Strausfeld NJ (2004) Development and morphology of Class II Kenyon cells in the mushroom bodies of the honey bee, Apis mellifera. J Comp Neurol 474:325–339

    Article  PubMed  Google Scholar 

  • Fritsch M, Richter S (2010) The formation of the nervous system during larval development in Triops cancriformis (Bosc) (Crustacea, Branchiopoda): an immunohistochemical survey. J Morphol 271:1457–1481

    Article  PubMed  Google Scholar 

  • Ganeshina O, Menzel R (2001) GABA-immunoreactive neurons in the mushroom bodies of the honeybee: an electron microscopic study. J Comp Neurol 437:335–349

    Article  CAS  PubMed  Google Scholar 

  • Grunewald B (1999) Morphology of feedback neurons in the mushroom body of the honey bee, Apis mellifera. J Comp Neurol 404:114–126

    Article  CAS  PubMed  Google Scholar 

  • Hanström B (1928) Vergleichende Anatomie des Nervensystems der wirbellosen Tiere. Springer, Berlin

    Google Scholar 

  • Hanström B (1947) The brain, the sense organs, and the incretory organs of the head in the Crustacea Malacostraca. Kungl Fysiografiska Sallskapets Handlingar NF 58:1–44

    Google Scholar 

  • Harzsch S (2006) Neurophylogeny: architecture of the nervous system and a fresh view on arthropod phylogeny. Integr Comp Biol 46:182–194

    Article  Google Scholar 

  • Harzsch S (2007) The architecture of the nervous system provides important characters for phylogenetic reconstructions: examples from the Arthropoda. Species Phylogeny Evol 1:33–57

    Google Scholar 

  • Harzsch S, Anger K, Dawirs RR (1997) Immunocytochemical detection of acetylated alpha-tubulin and Drosophila synapsin in the embryonic crustacean nervous system. Int J Dev Biol 41:477–484

    CAS  PubMed  Google Scholar 

  • Heuer CM, Loesel R (2008) Immunofluorescence analysis of the internal brain anatomy of Nereis diversicolor (Polychaeta, Annelida). Cell Tissue Res 331:713–724

    Article  CAS  PubMed  Google Scholar 

  • Heuer CM, Müller CH, Todt C, Loesel R (2010) Comparative neuroanatomy suggests repeated reduction of neuroarchitectural complexity in Annelida. Front Zool 7:13

    Article  PubMed Central  PubMed  Google Scholar 

  • Hoenemann M, Neiber MT, Humphreys WF, Iliffe TM, Li D, Schram FR, Koenemann S (2013) Phylogenetic analysis and systematic revision of Remipedia (Nectiopoda) from Bayesian analysis of molecular data. J Crust Biol 33:603–619

    Article  Google Scholar 

  • Homberg U (2002) Neurotransmitters and neuropeptides in the brain of the locust. Microsc Res Tech 56:189–209

    Article  CAS  PubMed  Google Scholar 

  • Homberg U, Kingan TG, Hildebrand JG (1987) Immunocytochemistry of GABA in the brain and suboesophageal ganglion of Manduca sexta. Cell Tissue Res 248:1–24

    Article  CAS  PubMed  Google Scholar 

  • Kenning M, Harzsch S (2013) Brain anatomy of the marine isopod Saduria entomon Linnaeus, 1758 (Valvifera, Isopoda) with special emphasis on the olfactory pathway. Front Neuroanat 7:32

    Article  PubMed Central  PubMed  Google Scholar 

  • Kenning M, Müller C, Wirkner CS, Harzsch S (2013) The Malacostraca (Crustacea) from a neurophylogenetic perspective: new insights from brain architecture in Nebalia herbstii Leach, 1814 (Leptostraca, Phyllocarida). Zool Anz J Comp Zool 252:319–336

    Article  Google Scholar 

  • Kubrakiewicz J, Jaglarz MK, Iliffe TM, Bilinski SM, Koenemann S (2012) Ovary structure and early oogenesis in the remipede, Godzilliognomus frondosus (Crustacea, Remipedia): phylogenetic implications. Zoology 115:261–269

    Article  PubMed  Google Scholar 

  • Lane ME, Kalderon D (1993) Genetic investigation of cAMP-dependent protein kinase function in Drosophila melanogaster development. Genes Dev 7:1229–1243

    Article  CAS  PubMed  Google Scholar 

  • Leitch B, Laurent G (1996) GABAergic synapses in the antennal lobe and mushroom body of the locust olfactory system. J Comp Neurol 372:487–514

    Article  CAS  PubMed  Google Scholar 

  • Loesel R, Richter S (2014) Neurophylogeny—from description to character analysis. In: Wägele JW, Bartholomäus T (eds) Deep metazoan phylogeny: the backbone of the tree of life. De Gruyter, Berlin, pp 505–514

    Google Scholar 

  • Matsubayashi Y, Iwai L, Kawasakia H (2008) Fluorescent double-labeling with carbocyanine neuronal tracing and immunohistochemistry using a cholesterol-specific detergent digitonin. J Neurosci Methods 174:71–81

    Article  CAS  PubMed  Google Scholar 

  • Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, Frandsen PB, Ware J, Flouri T, Beutel RG, Niehuis O, Petersen M, Izquierdo-Carrasco F, Wappler T, Rust J, Aberer AJ, Aspöck U, Aspöck H, Bartel D, Blanke A, Berger S, Böhm A, Buckley TR, Calcott B, Chen J, Friedrich F, Fukui M, Fujita M, Greve C, Grobe P, Gu S, Huang Y, Jermiin LS, Kawahara AY, Krogmann L, Kubiak M, Lanfear R, Letsch H, Li Y, Li Z, Li J, Lu H, Machida R, Mashimo Y, Kapli P, McKenna DD, Meng G, Nakagaki Y, Navarrete-Heredia JL, Ott M, Ou Y, Pass G, Podsiadlowski L, Pohl H, Reumont BM von, Schütte K, Sekiya K, Shimizu S, Slipinski A, Stamatakis A, Song W, Su X, Szucsich NU, Tan M, Tan X, Tang M, Tang J, Timelthaler G, Tomizuka S, Trautwein M, Tong X, Uchifune T, Walzl MG, Wiegmann BM, Wilbrandt J, Wipfler B, Wong TK, Wu Q, Wu G, Xie Y, Yang S, Yang Q, Yeates DK, Yoshizawa K, Zhang Q, Zhang R, Zhang W, Zhang Y, Zhao J, Zhou C, Zhou L, Ziesmann T, Zou S, Li Y, Xu X, Zhang Y, Yang H, Wang J, Wang J, Kjer KM, Zhou X (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763–767

  • Moura G, Christoffersen ML (1996) The system of the mandibulate arthropods: Tracheata and Remipedia as sister groups, “Crustacea” nonmonophyletic. J Comp Biol 1:95–113

    Google Scholar 

  • Müller U (2000) Prolonged activation of cAMP-dependent protein kinase during conditioning induces long-term memory in honey-bees. Neuron 27:159–168

    Article  PubMed  Google Scholar 

  • Nishino H, Mizunami M (1998) Giant input neurons of the mushroom body: intracellular recording and staining in the cockroach. Neurosci Lett 246:57–60

    Article  CAS  PubMed  Google Scholar 

  • Oakley TH, Wolfe JM, Lindgren AR, Zaharoff AK (2012) Phylotranscriptomics to bring the understudied into the fold: monophyletic Ostracoda, fossil placement and pancrustacean phylogeny. Mol Biol Evol 30:215–233

    Article  PubMed  Google Scholar 

  • Papadopoulou M, Cassenaer S, Nowotny T, Laurent G (2011) Normalization for sparse encoding of odors by a wide-field interneuron. Science 332:721–725

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Regier JC, Shultz JW, Ganley AR, Hussey A, Shi D, Ball B, Zwick A, Stajich JE, Cummings MP, Martin JW, Cunningham CW (2008) Resolving arthropod phylogeny: exploring phylogenetic signal within 41 kb of proteincoding nuclear gene sequence. Syst Biol 57:920–938

    Article  CAS  PubMed  Google Scholar 

  • Regier JC, Shultz JW, Zwick A, Hussey A, Ball B, Wetzer R, Martin JW, Cunningham CW (2010) Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463:1079–1083

    Article  CAS  PubMed  Google Scholar 

  • Reumont BM von, Jenner RA, Wills MA, Dell'ampio E, Pass G, Ebersberger I, Meyer B, Koenemann S, Iliffe TM, Stamatakis A, Niehuis O, Meusemann K, Misof B (2012) Pancrustacean phylogeny in the light of new phylogenomic data: support for Remipedia as the possible sister group of Hexapoda. Mol Biol Evol 29:1031–1045

  • Sandeman DC, Scholtz G, Sandeman RE (1993) Brain evolution in decapod Crustacea. J Exp Zool 265:112–133

  • Schachtner J, Schmidt M, Homberg U (2005) Organization and evolutionary trends of primary olfactory brain centers in Tetraconata (Crustacea+Hexapoda). Arthropod Struct Dev 34:257–299

    Article  Google Scholar 

  • Schürmann FW (2000) Acetylcholine, GABA, glutamate and NO as putative transmitters indicated by immunocytochemistry in the olfactory mushroom body system of the insect brain. Acta Biol Hung 51:355–362

    PubMed  Google Scholar 

  • Sjöholm M, Sinakevitch I, Strausfeld NJ, Ignell R, Hansson BS (2006) Functional division of intrinsic neurons in the mushroom bodies of male Spodoptera littoralis revealed by antibodies against aspartate, taurine, FMRF-amide, Mas-allatotropin and DC0. Arthropod Struct Dev 35:153–168

    Article  PubMed  Google Scholar 

  • Skoulakis EMC, Kalderon D, Davis RL (1993) Preferential expression in mushroom bodies of the catalytic subunit of protein kinase A and its role in learning and memory. Neuron 11:197–208

    Article  CAS  PubMed  Google Scholar 

  • Stapleton A, Tyrer NM, Goosey MW, Cooper ME (1989) A rapid purification of L-glutamic acid decarboxylase from the brain of the locust Schistocerca gregaria. J Neurochem 53:1126–1133

    Article  CAS  PubMed  Google Scholar 

  • Stegner MEJ, Richter S (2011) Morphology of the brain in Hutchinsoniella macracantha (Cephalocarida, Crustacea). Arthropod Struct Dev 40:221–243

    Article  PubMed  Google Scholar 

  • Stegner MEJ, Stemme T, Iliffe TM, Richter S, Wirkner CS (2015) The brain in three crustaceans from cavernous darkness. BMC Neurosci 16:19

    Article  PubMed Central  PubMed  Google Scholar 

  • Stemme T, Iliffe TM, Bicker G, Harzsch S, Koenemann S (2012) Serotonin immunoreactive interneurons in the brain of the Remipedia: new insights into the phylogenetic affinities of an enigmatic crustacean taxon. BMC Evol Biol 12:168

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stemme T, Iliffe TM, Reumont BM von, Koenemann S, Harzsch S, Bicker G (2013) Serotonin-immunoreactive neurons in the ventral nerve cord of Remipedia (Crustacea): support for a sister group relationship of Remipedia and Hexapoda? BMC Evol Biol 13:119

  • Stemme T, Eickhoff R, Bicker G (2014) Olfactory projection neuron pathways in two species of marine Isopoda (Peracarida, Malacostraca, Crustacea). Tissue Cell 46:260–263

    Article  PubMed  Google Scholar 

  • Stern M (2009) The PM1 neurons, movement sensitive centrifugal visual brain neurons in the locust: anatomy, physiology, and modulation by identified octopaminergic neurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 195:123–137

    Article  PubMed  Google Scholar 

  • Strausfeld NJ (2009) Brain organization and the origin of insects: an assessment. Proc Biol Sci 276:1929–1937

    Article  PubMed Central  PubMed  Google Scholar 

  • Strausfeld NJ, Li YS (1999) Organization of olfactory and multimodal afferent neurons supplying the calyx and pedunculus of the cockroach mushroom bodies. J Comp Neurol 409:603–625

    Article  CAS  PubMed  Google Scholar 

  • Strausfeld NJ, Sinakevitch I, Brown SM, Farris SM (2009) Ground plan of the insect mushroom body: functional and evolutionary implications. J Comp Neurol 513:265–291

    Article  PubMed  Google Scholar 

  • Sullivan JM, Beltz BS (2001) Neural pathways connecting the deutocerebrum and lateral protocerebrum in the brains of decapod crustaceans. J Comp Neurol 441:9–22

    Article  CAS  PubMed  Google Scholar 

  • Sullivan JM, Beltz BS (2004) Evolutionary changes in the olfactory projection neuron pathways of eumalacostracan crustaceans. J Comp Neurol 470:25–38

    Article  PubMed  Google Scholar 

  • Tomer R, Denes AS, Tessmar-Raible K, Arendt D (2010) Profiling by image registration reveals common origin of annelid mushroom bodies and vertebrate pallium. Cell 142:800–809

    Article  CAS  PubMed  Google Scholar 

  • Wolff GH, Strausfeld NJ (2015) Genealogical correspondence of mushroom bodies across invertebrate phyla. Curr Biol 25:38–44

    Article  CAS  PubMed  Google Scholar 

  • Wolff G, Harzsch S, Hansson BS, Brown S, Strausfeld N (2012) Neuronal organization of the hemiellipsoid body of the land hermit crab, Coenobita clypeatus: correspondence with the mushroom body ground pattern. J Comp Neurol 520:2824–2846

    Article  PubMed  Google Scholar 

  • Yamazaki Y, Nishikawa M, Mizunami M (1998) Three classes of GABA-like immunoreactive neurons in the mushroom body of the cockroach. Brain Res 788:80–86

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Daniel Kalderon for the gift of the DC0 antibody. We are grateful to Hannah Scheiblich for sharing her expertise in western blot analysis with us. René Eickhoff and Michael Stern contributed stimulating discussions and helpful comments. A collecting permit for Remipedia was issued by SEMARNAT (Secretaría de Medio Ambiente y Recursos Naturales) to Thomas M. Iliffe via a permit to Dr. Fernando Alvarez (FAUT-0104). The landowner kindly gave permission to collect specimens on the site.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Bicker.

Additional information

This research was supported by a scholarship from the German National Academic Foundation (Studienstiftung des Deutschen Volkes) to Torben Stemme and partly by DFG grant BI 262/18-1. Funds for the collection of Remipedia were provided by Texas A&M University: CONACYT collaborative science grant no. 10655 to Thomas Iliffe and Fernando Alvarez (Universidad Nacional Autónoma de México, Mexico City) and CONACYT grant no. 155644 to Fernando Alvarez.

The authors declare no competing interests.

T.S. carried out the laboratory work, microscopy, interpretation and presentation of data and drafted the manuscript. T.M.I. collected and preserved specimens and helped draft the manuscript. G.B. designed and coordinated the study and helped draft the manuscript. All authors gave final approval for publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stemme, T., Iliffe, T.M. & Bicker, G. Olfactory pathway in Xibalbanus tulumensis: remipedian hemiellipsoid body as homologue of hexapod mushroom body. Cell Tissue Res 363, 635–648 (2016). https://doi.org/10.1007/s00441-015-2275-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-015-2275-8

Keywords

Navigation