Skip to main content

Advertisement

Log in

Treatment of long bone defects and non-unions: from research to clinical practice

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The treatment of long bone defects and non-unions is still a major clinical and socio-economical problem. In addition to the non-operative therapeutic options, such as the application of various forms of electricity, extracorporeal shock wave therapy and ultrasound therapy, which are still in clinical use, several operative treatment methods are available. No consensus guidelines are available and the treatments of such defects differ greatly. Therefore, clinicians and researchers are presently investigating ways to treat large bone defects based on tissue engineering approaches. Tissue engineering strategies for bone regeneration seem to be a promising option in regenerative medicine. Several in vitro and in vivo studies in small and large animal models have been conducted to establish the efficiency of various tissue engineering approaches. Neverthelsss, the literature still lacks controlled studies that compare the different clinical treatment strategies currently in use. However, based on the results obtained so far in diverse animal studies, bone tissue engineering approaches need further validation in more clinically relevant animal models and in clinical pilot studies for the translation of bone tissue engineering approaches into clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albee FH (1915) The bone graft peg in the treatment of fractures of neck of femur: author's technic. Ann Surg 62:85–91

    PubMed  CAS  Google Scholar 

  • Alt V, Donell ST, Chhabra A, Bentley A, Eicher A, Schnettler R (2009) A health economic analysis of the use of rhBMP-2 in Gustilo-Anderson grade III open tibial fractures for the UK, Germany, and France. Injury 40:1269–1275

    PubMed  Google Scholar 

  • Bail HJ, Kolbeck S, Krummrey G, Schmidmaier G, Haas NP, Raschke MJ (2002) Systemic application of growth hormone for enhancement of secondary and intramembranous fracture healing. Horm Res 58 (Suppl 3):39–42

    PubMed  CAS  Google Scholar 

  • Bara T, Synder M (2007) Nine-years experience with the use of shock waves for treatment of bone union disturbances. Ortop Traumatol Rehabil 9:254–258

    PubMed  Google Scholar 

  • Barbieri CH, Mazzer N, Aranda CA, Pinto MM (1997) Use of a bone block graft from the iliac crest with rigid fixation to correct diaphyseal defects of the radius and ulna. J Hand Surg Br 22:395–401

    PubMed  CAS  Google Scholar 

  • Barry F, Boynton RE, Liu B, Murphy JM (2001) Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp Cell Res 268:189–200

    PubMed  CAS  Google Scholar 

  • Belthur MV, Conway JD, Jindal G, Ranade A, Herzenberg JE (2008) Bone graft harvest using a new intramedullary system. Clin Orthop Relat Res 466:2973–2980

    PubMed  Google Scholar 

  • Benacquista T, Kasabian AK, Karp NS (1996) The fate of lower extremities with failed free flaps. Plast Reconstr Surg 98:834–842

    PubMed  CAS  Google Scholar 

  • Blick SS, Brumback RJ, Lakatos R, Poka A, Burgess AR (1989) Early prophylactic bone grafting of high-energy tibial fractures. Clin Orthop Relat Res 240:21–41

    PubMed  Google Scholar 

  • Blokhuis TJ, Wippermann BW, Boer FC den, Lingen A van, Patka P, Bakker FC, Haarman HJ (2000) Resorbable calcium phosphate particles as a carrier material for bone marrow in an ovine segmental defect. J Biomed Mater Res 51:369–375

    PubMed  CAS  Google Scholar 

  • Boyde A, Corsi A, Quarto R, Cancedda R, Bianco P (1999) Osteoconduction in large macroporous hydroxyapatite ceramic implants: evidence for a complementary integration and disintegration mechanism. Bone 24:579–589

    PubMed  CAS  Google Scholar 

  • Brighton CT, Shaman P, Heppenstall RB, Esterhai JL Jr, Pollack SR, Friedenberg ZB (1995) Tibial nonunion treated with direct current, capacitive coupling, or bone graft. Clin Orthop Relat Res 321:223–234

    PubMed  Google Scholar 

  • Brinker MR, O'Connor DP (2007) Outcomes of tibial nonunion in older adults following treatment using the Ilizarov method. J Orthop Trauma 21:634–642

    PubMed  Google Scholar 

  • Brodke D, Pedrozo HA, Kapur TA, Attawia M, Kraus KH, Holy CE, Kadiyala S, Bruder SP (2006) Bone grafts prepared with selective cell retention technology heal canine segmental defects as effectively as autograft. J Orthop Res 24:857–866

    PubMed  Google Scholar 

  • Bucholz RW, Carlton A, Holmes R (1989) Interporous hydroxyapatite as a bone graft substitute in tibial plateau fractures. Clin Orthop Relat Res 240:53–62

    PubMed  Google Scholar 

  • Busse JW, Morton E, Lacchetti C, Guyatt GH, Bhandari M (2008) Current management of tibial shaft fractures: a survey of 450 Canadian orthopedic trauma surgeons. Acta Orthop 79:689–694

    PubMed  Google Scholar 

  • Ceruso M, Taddei F, Bigazzi P, Manfrini M (2008) Vascularised fibula graft inlaid in a massive bone allograft: considerations on the bio-mechanical behaviour of the combined graft in segmental bone reconstructions after sarcoma resection. Injury 39 (Suppl 3):S68–S74

    PubMed  Google Scholar 

  • Cestari TM, Granjeiro JM, Assis GF de, Garlet GP, Taga R (2009) Bone repair and augmentation using block of sintered bovine-derived anorganic bone graft in cranial bone defect model. Clin Oral Implants Res 20:340–350

    Google Scholar 

  • Chapman MW, Finkemeier CG (1999) Treatment of supracondylar nonunions of the femur with plate fixation and bone graft. J Bone Joint Surg Am 81:1217–1228

    PubMed  CAS  Google Scholar 

  • Chen A, Hou C, Zhao Y (2005) Osteomyocutaneous latissimus dorsi scapular combined flap with vascularized rib to repair the large defect of tibia. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 19:541–543

    PubMed  Google Scholar 

  • Chutro P (1918) Greffe osseuse du tibia. Bull Mem Soc Chir Paris 44:570

    Google Scholar 

  • Cierny G 3rd, Zorn KE (1994) Segmental tibial defects. Comparing conventional and Ilizarov methodologies. Clin Orthop Relat Res 301:118–123

    PubMed  Google Scholar 

  • Clancey GJ, Winquist RA, Hansen ST Jr (1982) Nonunion of the tibia treated with Kuntscher intramedullary nailing. Clin Orthop Relat Res 167:191–196

    PubMed  Google Scholar 

  • Connolly JF (1985) Common avoidable problems in nonunions. Clin Orthop Relat Res 194:226–235

    PubMed  Google Scholar 

  • Dallari D, Savarino L, Stagni C, Cenni E, Cenacchi A, Fornasari PM, Albisinni U, Rimondi E, Baldini N, Giunti A (2007) Enhanced tibial osteotomy healing with use of bone grafts supplemented with platelet gel or platelet gel and bone marrow stromal cells. J Bone Joint Surg Am 89:2413–2420

    PubMed  CAS  Google Scholar 

  • De Bari C, Dell'Accio F, Luyten FP (2001) Human periosteum-derived cells maintain phenotypic stability and chondrogenic potential throughout expansion regardless of donor age. Arthritis Rheum 44:85–95

    PubMed  Google Scholar 

  • Dell PC, Burchardt H, Glowczewskie FP Jr (1985) A roentgenographic, biomechanical, and histological evaluation of vascularized and non-vascularized segmental fibular canine autografts. J Bone Joint Surg Am 67:105–112

    PubMed  CAS  Google Scholar 

  • Devnani AS (2001) Simple approach to the management of aseptic non-union of the shaft of long bones. Singapore Med J 42:20–25

    PubMed  CAS  Google Scholar 

  • Dimitriou R, Dahabreh Z, Katsoulis E, Matthews SJ, Branfoot T, Giannoudis PV (2005) Application of recombinant BMP-7 on persistent upper and lower limb non-unions. Injury 36 (Suppl 4):S51–S59

    PubMed  Google Scholar 

  • Doi K, Kawakami F, Hiura Y, Oda T, Sakai K, Kawai S (1995) One-stage treatment of infected bone defects of the tibia with skin loss by free vascularized osteocutaneous grafts. Microsurgery 16:704–712

    PubMed  CAS  Google Scholar 

  • Eastlack RK, Dekutoski MB, Bishop AT, Moran SL, Shin AY (2007) Vascularized pedicled rib graft: a technique for posterior placement in spinal reconstruction. J Spinal Disord Tech 20:610–615

    PubMed  Google Scholar 

  • El-Gammal TA, El-Sayed A, Kotb MM (2002) Microsurgical reconstruction of lower limb bone defects following tumor resection using vascularized fibula osteoseptocutaneous flap. Microsurgery 22:193–198

    PubMed  Google Scholar 

  • Faria ML, Lu Y, Heaney K, Uthamanthil RK, Muir P, Markel MD (2007) Recombinant human bone morphogenetic protein-2 in absorbable collagen sponge enhances bone healing of tibial osteotomies in dogs. Vet Surg 36:122–131

    PubMed  Google Scholar 

  • Finkemeier CG, Chapman MW (2002) Treatment of femoral diaphyseal nonunions. Clin Orthop Relat Res 398:223–234

    PubMed  Google Scholar 

  • Friedlaender GE, Perry CR, Cole JD, Cook SD, Cierny G, Muschler GF, Zych GA, Calhoun JH, LaForte AJ, Yin S (2001) Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J Bone Joint Surg Am 83 (Suppl 1-Pt 2):S151–S158

    PubMed  Google Scholar 

  • Gallie W (1931) The transplantation of bone. Br Med J 2:840

    PubMed  CAS  Google Scholar 

  • Galpin RD, Veith RG, Hansen ST (1986) Treatment of failures after plating of tibial fractures. J Bone Joint Surg Am 68:1231–1236

    PubMed  CAS  Google Scholar 

  • Gebauer D, Mayr E, Orthner E, Ryaby JP (2005) Low-intensity pulsed ultrasound: effects on nonunions. Ultrasound Med Biol 31:1391–1402

    PubMed  Google Scholar 

  • Gershuni DH, Pinsker R (1982) Bone grafting for nonunion of fractures of the tibia: a critical review. J Trauma 22:43–49

    PubMed  CAS  Google Scholar 

  • Giannoudis PV, Kanakaris NK, Dimitriou R, Gill I, Kolimarala V, Montgomery RJ (2009) The synergistic effect of autograft and BMP-7 in the treatment of atrophic nonunions. Clin Orthop Relat Res 467:3239–3248

    PubMed  Google Scholar 

  • Goldstrohm GL, Mears DC, Swartz WM (1984) The results of 39 fractures complicated by major segmental bone loss and/or leg length discrepancy. J Trauma 24:50–58

    PubMed  CAS  Google Scholar 

  • Golyakhovsky V, Frankel VH (1991) Ilizarov bone transport in large bone loss and in severe osteomyelitis. Bull Hosp Jt Dis Orthop Inst 51:63–73

    PubMed  CAS  Google Scholar 

  • Govender S, Csimma C, Genant HK, Valentin-Opran A, Amit Y, Arbel R, Aro H, Atar D, Bishay M, Borner MG, Chiron P, Choong P, Cinats J, Courtenay B, Feibel R, Geulette B, Gravel C, Haas N, Raschke M, Hammacher E, Velde D van der, Hardy P, Holt M, Josten C, Ketterl RL, Lindeque B, Lob G, Mathevon H, McCoy G, Marsh D, Miller R, Munting E, Oevre S, Nordsletten L, Patel A, Pohl A, Rennie W, Reynders P, Rommens PM, Rondia J, Rossouw WC, Daneel PJ, Ruff S, Ruter A, Santavirta S, Schildhauer TA, Gekle C, Schnettler R, Segal D, Seiler H, Snowdowne RB, Stapert J, Taglang G, Verdonk R, Vogels L, Weckbach A, Wentzensen A, Wisniewski T (2002) Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg Am 84:2123–2134

    PubMed  Google Scholar 

  • Green SA (1994) Skeletal defects. A comparison of bone grafting and bone transport for segmental skeletal defects. Clin Orthop Relat Res 301:111–117

    PubMed  Google Scholar 

  • Green SA, Garland DE, Moore TJ, Barad SJ (1984) External fixation for the uninfected angulated nonunion of the tibia. Clin Orthop Relat Res 190:204–211

    PubMed  Google Scholar 

  • Heckman JD, Boyan BD, Aufdemorte TB, Abbott JT (1991) The use of bone morphogenetic protein in the treatment of non-union in a canine model. J Bone Joint Surg Am 73:750–764

    PubMed  CAS  Google Scholar 

  • Heckman JD, Ehler W, Brooks BP, Aufdemorte TB, Lohmann CH, Morgan T, Boyan BD (1999) Bone morphogenetic protein but not transforming growth factor-beta enhances bone formation in canine diaphyseal nonunions implanted with a biodegradable composite polymer. J Bone Joint Surg Am 81:1717–1729

    PubMed  CAS  Google Scholar 

  • Heiple KG, Chase SW, Herndon CH (1963) A comparative study of the healing process following different types of bone transplantation. J Bone Joint Surg Am 45:1593–1616

    PubMed  CAS  Google Scholar 

  • Heiple KG, Goldberg VM, Powell AE, Bos GD, Zika JM (1987) Biology of cancellous bone grafts. Orthop Clin North Am 18:179–185

    PubMed  CAS  Google Scholar 

  • Helfet DL, Jupiter JB, Gasser S (1992) Indirect reduction and tension-band plating of tibial non-union with deformity. J Bone Joint Surg Am 74:1286–1297

    PubMed  CAS  Google Scholar 

  • Hernigou P, Poignard A, Beaujean F, Rouard H (2005) Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg Am 87:1430–1437

    PubMed  Google Scholar 

  • Hierholzer C, Sama D, Toro JB, Peterson M, Helfet DL (2006) Plate fixation of ununited humeral shaft fractures: effect of type of bone graft on healing. J Bone Joint Surg Am 88:1442–1447

    PubMed  Google Scholar 

  • Higgs S (1945) The use of cancellous chips in bone-graft surgery. J Bone Joint Surg 27:729

    Google Scholar 

  • Ho ST, Hutmacher DW, Ekaputra AK, Hitendra D, James HH (2010) The evaluation of a biphasic osteochondral implant coupled with an electrospun membrane in a large animal model. Tissue Eng Part A 16:1123–1141

    PubMed  CAS  Google Scholar 

  • Hsu TL, Chiu FY, Chen CM, Chen TH (2005) Treatment of nonunion of humeral shaft fracture with dynamic compression plate and cancellous bone graft. J Chin Med Assoc 68:73–76

    PubMed  Google Scholar 

  • Hutmacher DW, Schantz JT, Lam CX, Tan KC, Lim TC (2007) State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med 1:245–260

    PubMed  CAS  Google Scholar 

  • Ilizarov GA, Soĭbel'man LM (1969) [Clinical and experimental data on bloodless lengthening of lower extremities]. Eksp Khir Anesteziol 14:27–32

    PubMed  CAS  Google Scholar 

  • Ilizarov GA (1971) Basic principles of transosseous compression and distraction osteosynthesis. Ortop Travmatol Protez 32:7–15

    PubMed  CAS  Google Scholar 

  • Ilizarov GA (1989) The tension-stress effect on the genesis and growth of tissues. Part II. The influence of the rate and frequency of distraction. Clin Orthop Relat Res 239:263–285

    PubMed  Google Scholar 

  • Ilizarov GA (1990) Clinical application of the tension-stress effect for limb lengthening. Clin Orthop Relat Res 250:8–26

    PubMed  Google Scholar 

  • Ilizarov GA, Lediaev VI (1969) Replacement of defects of long tubular bones by means of one of their fragments. Vestn Khir Im I I Grek 102:77–84

    PubMed  CAS  Google Scholar 

  • Jafarian M, Eslaminejad MB, Khojasteh A, Mashhadi Abbas F, Dehghan MM, Hassanizadeh R, Houshmand B (2008) Marrow-derived mesenchymal stem cells-directed bone regeneration in the dog mandible: a comparison between biphasic calcium phosphate and natural bone mineral. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 105:e14–e24

    PubMed  Google Scholar 

  • Jager M, Jelinek EM, Wess KM, Scharfstadt A, Jacobson M, Kevy SV, Krauspe R (2009) Bone marrow concentrate: a novel strategy for bone defect treatment. Curr Stem Cell Res Ther 4:34–43

    PubMed  Google Scholar 

  • Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP (1997) Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64:295–312

    PubMed  CAS  Google Scholar 

  • Johnson EE (1987) Multiplane correctional osteotomy of the tibia for diaphyseal malunion. Clin Orthop Relat Res 215:223–232

    PubMed  Google Scholar 

  • Johnson EE, Marder RA (1987) Open intramedullary nailing and bone-grafting for non-union of tibial diaphyseal fracture. J Bone Joint Surg Am 69:375–380

    PubMed  CAS  Google Scholar 

  • Johnson EE, Urist MR (1989) Distal metaphyseal tibial nonunions associated with significant bowing deformity and cortical bone loss: treatment with human bone morphogenetic protein (h-BMP) and internal fixation. Nippon Seikeigeka Gakkai Zasshi 63:613–620

    PubMed  CAS  Google Scholar 

  • Johnson EE, Urist MR (2000) Human bone morphogenetic protein allografting for reconstruction of femoral nonunion. Clin Orthop Relat Res 371:61–74

    PubMed  Google Scholar 

  • Johnson EE, Urist MR, Finerman GA (1988) Repair of segmental defects of the tibia with cancellous bone grafts augmented with human bone morphogenetic protein. A preliminary report. Clin Orthop Relat Res 236:249–257

    PubMed  Google Scholar 

  • Johnson EE, Simpson LA, Helfet DL (1990a) Delayed intramedullary nailing after failed external fixation of the tibia. Clin Orthop Relat Res 253:251–257

    PubMed  Google Scholar 

  • Johnson EE, Urist MR, Finerman GA (1990b) Distal metaphyseal tibial nonunion. Deformity and bone loss treated by open reduction, internal fixation, and human bone morphogenetic protein (hBMP). Clin Orthop Relat Res 250:234–240

    PubMed  Google Scholar 

  • Johnson KD (1987) Management of malunion and nonunion of the tibia. Orthop Clin North Am 18:157–171

    PubMed  CAS  Google Scholar 

  • Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 238:265–272

    PubMed  CAS  Google Scholar 

  • Jones CB, Sabatino CT, Badura JM, Sietsema DL, Marotta JS (2008) Improved healing efficacy in canine ulnar segmental defects with increasing recombinant human bone morphogenetic protein-2/allograft ratios. J Orthop Trauma 22:550–559

    PubMed  Google Scholar 

  • Jones KG (1965) Treatment of infected nonunion of the tibia through the posterolateral approach. Clin Orthop Relat Res 43:103–109

    PubMed  CAS  Google Scholar 

  • Kanakaris NK, Calori GM, Verdonk R, Burssens P, De Biase P, Capanna R, Vangosa LB, Cherubino P, Baldo F, Ristiniemi J, Kontakis G, Giannoudis PV (2008) Application of BMP-7 to tibial non-unions: a 3-year multicenter experience. Injury 39 (Suppl 2):S83–S90

    PubMed  Google Scholar 

  • Kasten P, Vogel J, Geiger F, Niemeyer P, Luginbuhl R, Szalay K (2008) The effect of platelet-rich plasma on healing in critical-size long-bone defects. Biomaterials 29:3983–3992

    PubMed  CAS  Google Scholar 

  • Kdolsky RK, Mohr W, Savidis-Dacho H, Beer R, Puig S, Reihsner R, Tangl S, Donath K (2005) The influence of oral L-arginine on fracture healing: an animal study. Wien Klin Wochenschr 117:693–701

    PubMed  CAS  Google Scholar 

  • Kettunen J, Makela A, Miettinen H, Nevalainen T, Heikkila M, Tormala P, Rokkanen P (1999) Fixation of distal femoral osteotomy with an intramedullary rod: early failure of carbon fibre composite implant in rabbits. J Biomater Sci Polym Ed 10:715–728

    PubMed  CAS  Google Scholar 

  • Kilian O, Wenisch S, Alt V, Lauer M, Fuhrmann R, Dingeldein E, Jonuleit T, Schnettler R, Franke RP (2007) Effects of platelet factors on biodegradation and osteogenesis in metaphyseal defects filled with nanoparticular hydroxyapatite—an experimental study in minipigs. Growth Factors 25:191–201

    PubMed  CAS  Google Scholar 

  • Kim SJ, Shin YW, Yang KH, Kim SB, Yoo MJ, Han SK, Im SA, Won YD, Sung YB, Jeon TS, Chang CH, Jang JD, Lee SB, Kim HC, Lee SY (2009) A multi-center, randomized, clinical study to compare the effect and safety of autologous cultured osteoblast (Ossron) injection to treat fractures. BMC Musculoskelet Disord 10:20

    PubMed  Google Scholar 

  • Kitoh H, Kitakoji T, Tsuchiya H, Mitsuyama H, Nakamura H, Katoh M, Ishiguro N (2004) Transplantation of marrow-derived mesenchymal stem cells and platelet-rich plasma during distraction osteogenesis—a preliminary result of three cases. Bone 35:892–898

    PubMed  Google Scholar 

  • Kitoh H, Kitakoji T, Tsuchiya H, Katoh M, Ishiguro N (2007) Distraction osteogenesis of the lower extremity in patients with achondroplasia/hypochondroplasia treated with transplantation of culture-expanded bone marrow cells and platelet-rich plasma. J Pediatr Orthop 27:629–634

    PubMed  Google Scholar 

  • Klaue K, Knothe U, Anton C, Pfluger DH, Stoddart M, Masquelet AC, Perren SM (2009) Bone regeneration in long-bone defects: tissue compartmentalisation? In vivo study on bone defects in sheep. Injury 40 (Suppl 4):S95–S102

    PubMed  Google Scholar 

  • Kloen P, Doty SB, Gordon E, Rubel IF, Goumans MJ, Helfet DL (2002) Expression and activation of the BMP-signaling components in human fracture nonunions. J Bone Joint Surg Am 84:1909–18

    PubMed  Google Scholar 

  • Kocaoglu M, Eralp L, Rashid HU, Sen C, Bilsel K (2006) Reconstruction of segmental bone defects due to chronic osteomyelitis with use of an external fixator and an intramedullary nail. J Bone Joint Surg Am 88:2137–2145

    PubMed  Google Scholar 

  • Kokubo S, Mochizuki M, Fukushima S, Ito T, Nozaki K, Iwai T, Takahashi K, Yokota S, Miyata K, Sasaki N (2004) Long-term stability of bone tissues induced by an osteoinductive biomaterial, recombinant human bone morphogenetic protein-2 and a biodegradable carrier. Biomaterials 25:1795–1803

    PubMed  CAS  Google Scholar 

  • Korompilias AV, Lykissas MG, Soucacos PN, Kostas I, Beris AE (2009) Vascularized free fibular bone graft in the management of congenital tibial pseudarthrosis. Microsurgery 29:346–352

    PubMed  Google Scholar 

  • Kumta SM, Leung PC, Yip K, Hung LK, Panozzo A, Kew J (1998) Vascularized bone grafts in the treatment of juxta-articular giant-cell tumors of the bone. J Reconstr Microsurg 14:185–190

    PubMed  CAS  Google Scholar 

  • Kuzyk PR, Schemitsch EH, Davies JE (2010) A biodegradable scaffold for the treatment of a diaphyseal bone defect of the tibia. J Orthop Res 28:474–480

    PubMed  CAS  Google Scholar 

  • Lane JM, Tomin E, Bostrom MP (1999) Biosynthetic bone grafting. Clin Orthop Relat Res 367 (Suppl):S107–S117

    PubMed  Google Scholar 

  • Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    PubMed  CAS  Google Scholar 

  • Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringden O (2003) HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 31:890–896

    PubMed  Google Scholar 

  • LeCroy CM, Rizzo M, Gunneson EE, Urbaniak JR (2002) Free vascularized fibular bone grafting in the management of femoral neck nonunion in patients younger than fifty years. J Orthop Trauma 16:464–472

    PubMed  Google Scholar 

  • Lee KS, Han SB, Baek JR (2004) Free vascularized osteocutaneous fibular graft to the tibia in 51 consecutive cases. J Reconstr Microsurg 20:277–284

    PubMed  Google Scholar 

  • Leonardi E, Devescovi V, Perut F, Ciapetti G, Giunti A (2008) Isolation, characterisation and osteogenic potential of human bone marrow stromal cells derived from the medullary cavity of the femur. Chir Organi Mov 92:97–103

    PubMed  Google Scholar 

  • Lin CL, Fang CK, Chiu FY, Chen CM, Chen TH (2009) Revision with dynamic compression plate and cancellous bone graft for aseptic nonunion after surgical treatment of humeral shaft fracture. J Trauma 67:1393–1396

    PubMed  Google Scholar 

  • Lindsey RW, Gugala Z, Milne E, Sun M, Gannon FH, Latta LL (2006) The efficacy of cylindrical titanium mesh cage for the reconstruction of a critical-size canine segmental femoral diaphyseal defect. J Orthop Res 24:1438–1453

    PubMed  CAS  Google Scholar 

  • Liu G, Zhao L, Zhang W, Cui L, Liu W, Cao Y (2008) Repair of goat tibial defects with bone marrow stromal cells and beta-tricalcium phosphate. J Mater Sci Mater Med 19:2367–2376

    PubMed  CAS  Google Scholar 

  • Marcacci M, Kon E, Moukhachev V, Lavroukov A, Kutepov S, Quarto R, Mastrogiacomo M, Cancedda R (2007) Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng 13:947–955

    PubMed  CAS  Google Scholar 

  • Martin D, Pistre V, Pinsolle V, Pelissier P, Baudet J (2000a) [The iliac crest. Perspective on a donor site of exceptional free flaps, 20 years after its initial description]. Ann Chir Plast Esthet 45:201–218

    PubMed  CAS  Google Scholar 

  • Martin D, Pistre V, Pinsolle V, Pelissier P, Baudet J (2000b) The scapula: a preferred donor site for a free flaps or pedicles transfer. Ann Chir Plast Esthet 45:272–283

    PubMed  CAS  Google Scholar 

  • Mast JW (1983) Preoperative planning in the surgical correction of tibial nonunions and malunions. Clin Orthop Relat Res 178:26–30

    PubMed  Google Scholar 

  • Mayo KA, Benirschke SK (1990) Treatment of tibial malunions and nonunions with reamed intramedullary nails. Orthop Clin North Am 21:715–724

    PubMed  CAS  Google Scholar 

  • Mayr E, Frankel V, Ruter A (2000) Ultrasound—an alternative healing method for nonunions? Arch Orthop Trauma Surg 120:1–8

    PubMed  CAS  Google Scholar 

  • McGraw JM, Lim EV (1988) Treatment of open tibial-shaft fractures. External fixation and secondary intramedullary nailing. J Bone Joint Surg Am 70:900–911

    PubMed  CAS  Google Scholar 

  • Meyer RA, Meyer MH, Phieffer LS, Banks DM (2001) Delayed union of femoral fractures in older rats: decreased gene expression. BMC Musculoskelet Disord 2:2

    PubMed  CAS  Google Scholar 

  • Miller MA, Ivkovic A, Porter R, Harris MB, Estok DM 2nd, Smith RM, Evans CH, Vrahas MS (2011) Autologous bone grafting on steroids: preliminary clinical results. A novel treatment for nonunions and segmental bone defects.Int Orthop 35:599–605

    PubMed  Google Scholar 

  • Moghaddam A, Elleser C, Biglari B, Wentzensen A, Zimmermann G (2010) Clinical application of BMP 7 in long bone non-unions. Arch Orthop Trauma Surg 130:71–76

    PubMed  Google Scholar 

  • Morasiewicz L, Orzechowski W, Kulej M, Stepniewski M (2007) The results of treatment of bone defects and non-union within the femoral shaft with shortening of femur using Ilizarov method. Ortop Traumatol Rehabil 9:366–376

    PubMed  Google Scholar 

  • Morishita T, Honoki K, Ohgushi H, Kotobuki N, Matsushima A, Takakura Y (2006) Tissue engineering approach to the treatment of bone tumors: three cases of cultured bone grafts derived from patients' mesenchymal stem cells. Artif Organs 30–2:115–118

    Google Scholar 

  • Mowlem R (1944) Cancellous chip bone-graft. Lancet II:746

    Google Scholar 

  • Muscolo DL, Ayerza MA, Aponte-Tinao LA (2006) Massive allograft use in orthopedic oncology. Orthop Clin North Am 37:65–74

    PubMed  Google Scholar 

  • Nakahara H, Misawa H, Hayashi T, Kondo E, Yuasa T, Kubota Y, Seita M, Kawamoto H, Hassan WA, Hassan RA, Javed SM, Tanaka M, Endo H, Noguchi H, Matsumoto S, Takata K, Tashiro Y, Nakaji S, Ozaki T, Kobayashi N (2009) Bone repair by transplantation of hTERT-immortalized human mesenchymal stem cells in mice. Transplantation 88:346–353

    PubMed  Google Scholar 

  • Niemeyer P, Szalay K, Luginbuhl R, Sudkamp NP, Kasten P (2010a) Transplantation of human mesenchymal stem cells in a non-autogenous setting for bone regeneration in a rabbit critical-size defect model. Acta Biomater 6:900–908

    PubMed  CAS  Google Scholar 

  • Niemeyer P, Schonberger TS, Hahn J, Kasten P, Fellenberg J, Suedkamp N, Mehlhorn AT, Milz S, Pearce S (2010b) Xenogenic transplantation of human mesenchymal stem cells in a critical size defect of the sheep tibia for bone regeneration. Tissue Eng Part A 16:33–43

    PubMed  CAS  Google Scholar 

  • Niemeyer P, Fechner K, Milz S, Richter W, Suedkamp NP, Mehlhorn AT, Pearce S, Kasten P (2010c) Comparison of mesenchymal stem cells from bone marrow and adipose tissue for bone regeneration in a critical size defect of the sheep tibia and the influence of platelet-rich plasma. Biomaterials 31:3572-3579

    PubMed  CAS  Google Scholar 

  • Noth U, Osyczka AM, Tuli R, Hickok NJ, Danielson KG, Tuan RS (2002) Multilineage mesenchymal differentiation potential of human trabecular bone-derived cells. J Orthop Res 20:1060–1069

    PubMed  Google Scholar 

  • Oest ME, Dupont KM, Kong HJ, Mooney DJ, Guldberg RE (2007) Quantitative assessment of scaffold and growth factor-mediated repair of critically sized bone defects. J Orthop Res 25:941–950

    PubMed  CAS  Google Scholar 

  • Oikarinen J, Korhonen LK (1979) The bone inductive capacity of various bone transplanting materials used for treatment of experimental bone defects. Clin Orthop Relat Res 140:208–215

    PubMed  Google Scholar 

  • Ouyang HW, Goh JC, Lee EH (2004) Viability of allogeneic bone marrow stromal cells following local delivery into patella tendon in rabbit model. Cell Transplant 13:649–657

    PubMed  Google Scholar 

  • Ozkan C, Dogramaci Y, Kalaci A, Gulsen M, Bayram H (2010) Results of using Ilizarov distraction osteogenesis technique for the treatment of cubitus varus deformities in adults. Arch Orthop Trauma Surg 130:489–495

    PubMed  Google Scholar 

  • Ozkaynak E, Rueger DC, Drier EA, Corbett C, Ridge RJ, Sampath TK, Oppermann H (1990) OP-1 cDNA encodes an osteogenic protein in the TGF-beta family. EMBO J 9:2085–2093

    PubMed  CAS  Google Scholar 

  • Ozturkmen Y, Dogrul C, Karli M (2003) Results of the Ilizarov method in the treatment of pseudoarthrosis of the lower extremities. Acta Orthop Traumatol Turc 37:9–18

    PubMed  Google Scholar 

  • Paley D, Catagni MA, Argnani F, Villa A, Benedetti GB, Cattaneo R (1989) Ilizarov treatment of tibial nonunions with bone loss. Clin Orthop Relat Res 241:146–165

    PubMed  Google Scholar 

  • Pazzaglia UE, Zatti G, Ragni P, Ceciliani L (1988) The role of mineralization in experimental models of osteogenetic induction with decalcified bone matrix. Ital J Orthop Traumatol 14:369–375

    PubMed  CAS  Google Scholar 

  • Perry CR (1999) Bone repair techniques, bone graft, and bone graft substitutes. Clin Orthop Relat Res 360:71–86

    PubMed  Google Scholar 

  • Pieri F, Lucarelli E, Corinaldesi G, Fini M, Aldini NN, Giardino R, Donati D, Marchetti C (2009) Effect of mesenchymal stem cells and platelet-rich plasma on the healing of standardized bone defects in the alveolar ridge: a comparative histomorphometric study in minipigs. J Oral Maxillofac Surg 67:265–272

    PubMed  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    PubMed  CAS  Google Scholar 

  • Polyzois D, Papachristou G, Kotsiopoulos K, Plessas S (1997) Treatment of tibial and femoral bone loss by distraction osteogenesis. Experience in 28 infected and 14 clean cases. Acta Orthop Scand Suppl 275:84–88

    PubMed  CAS  Google Scholar 

  • Quarto R, Mastrogiacomo M, Cancedda R, Kutepov SM, Mukhachev V, Lavroukov A, Kon E, Marcacci M (2001) Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 344:385–386

    PubMed  CAS  Google Scholar 

  • Raschke M, Kolbeck S, Bail H, Schmidmaier G, Flyvbjerg A, Lindner T, Dahne M, Roenne IA, Haas N (2001) Homologous growth hormone accelerates healing of segmental bone defects. Bone 29:368–373

    PubMed  CAS  Google Scholar 

  • Reckling FW, Waters CH 3rd (1980) Treatment of non-unions of fractures of the tibial diaphysis by posterolateral cortical cancellous bone-grafting. J Bone Joint Surg Am 62:936–941

    PubMed  CAS  Google Scholar 

  • Reichert JC, Saifzadeh S, Wullschleger ME, Epari DR, Schutz MA, Duda GN, Schell H, Griensven M van, Redl H, Hutmacher DW (2009) The challenge of establishing preclinical models for segmental bone defect research. Biomaterials 30:2149–2163

    PubMed  CAS  Google Scholar 

  • Reichert JC, Epari DR, Wullschleger ME, Saifzadeh S, Steck R, Lienau J, Sommerville S, Dickinson IC, Schutz MA, Duda GN, Hutmacher DW (2010a) Establishment of a preclinical ovine model for tibial segmental bone defect repair by applying bone tissue engineering strategies. Tissue Eng Part B Rev 16:93–104

    PubMed  Google Scholar 

  • Reichert JC, Woodruff MA, Friis T, Quent VM, Gronthos S, Duda GN, Schutz MA, Hutmacher DW (2010b) Ovine bone- and marrow-derived progenitor cells and their potential for scaffold-based bone tissue engineering applications in vitro and in vivo. J Tissue Eng Regen Med 4:565–576

    PubMed  CAS  Google Scholar 

  • Reichert JC, Quent VM, Noth U, Hutmacher DW (2011) Ovine cortical osteoblasts outperform bone marrow cells in an ectopic bone assay. J Tissue Eng Regen Med (in press)

  • Riley EH, Lane JM, Urist MR, Lyons KM, Lieberman JR (1996) Bone morphogenetic protein-2: biology and applications. Clin Orthop Relat Res 324:39–46

    PubMed  Google Scholar 

  • Ring D, Allende C, Jafarnia K, Allende BT, Jupiter JB (2004) Ununited diaphyseal forearm fractures with segmental defects: plate fixation and autogenous cancellous bone-grafting. J Bone Joint Surg Am 86:2440–2445

    PubMed  Google Scholar 

  • Rompe JD, Hopf C, Nafe B, Burger R (1996) Low-energy extracorporeal shock wave therapy for painful heel: a prospective controlled single-blind study. Arch Orthop Trauma Surg 115:75–79

    PubMed  CAS  Google Scholar 

  • Ronga M, Baldo F, Zappala G, Cherubino P (2006) Recombinant human bone morphogenetic protein-7 for treatment of long bone non-union: an observational, retrospective, non-randomized study of 105 patients. Injury 37 (Suppl 3):S51–S56

    PubMed  Google Scholar 

  • Ryzewicz M, Morgan SJ, Linford E, Thwing JI, Resende GV de, Smith WR (2009) Central bone grafting for nonunion of fractures of the tibia: a retrospective series. J Bone Joint Surg Br 91:522–529

    PubMed  CAS  Google Scholar 

  • Sakellarides HT, Freeman PA, Grant BD (1964) Delayed union and non-union of tibial-shaft fractures. A review of 100 cases. J Bone Joint Surg Am 46:557–569

    PubMed  CAS  Google Scholar 

  • Schagemann JC, Erggelet C, Chung HW, Lahm A, Kurz H, Mrosek EH (2009) Cell-laden and cell-free biopolymer hydrogel for the treatment of osteochondral defects in a sheep model. Tissue Eng A 15:75–82

    CAS  Google Scholar 

  • Schliephake H, Neukam FW, Hutmacher D, Becker J (1994) Enhancement of bone ingrowth into a porous hydroxylapatite-matrix using a resorbable polylactic membrane: an experimental pilot study. J Oral Maxillofac Surg 52:57–63

    PubMed  CAS  Google Scholar 

  • Schmidmaier G, Herrmann S, Green J, Weber T, Scharfenberger A, Haas NP, Wildemann B (2006) Quantitative assessment of growth factors in reaming aspirate, iliac crest, and platelet preparation. Bone 39:1156–1163

    PubMed  CAS  Google Scholar 

  • Schneider RK, Puellen A, Kramann R, Raupach K, Bornemann J, Knuechel R, Perez-Bouza A, Neuss S (2010) The osteogenic differentiation of adult bone marrow and perinatal umbilical mesenchymal stem cells and matrix remodelling in three-dimensional collagen scaffolds. Biomaterials 31:467–480

    PubMed  CAS  Google Scholar 

  • Seebach C, Henrich D, Kaehling C, Wilhelm K, Tami A, Alini M, Marzi I (2010) Endothelial progenitor cells and mesenchymal stem cells seeded onto beta-TCP granules enhance early vascularization and bone healing in a critical size bone defect in rats. Tissue Eng Part A 16:1961–1970

    PubMed  CAS  Google Scholar 

  • Simon JP, Stuyck J, Hoogmartens M, Fabry G (1992) Posterolateral bone grafting for nonunion of the tibia. Acta Orthop Belg 58:308–313

    PubMed  CAS  Google Scholar 

  • Sledge SL, Johnson KD, Henley MB, Watson JT (1989) Intramedullary nailing with reaming to treat non-union of the tibia. J Bone Joint Surg Am 71:1004–1019

    PubMed  CAS  Google Scholar 

  • Souter WA (1969) Autogenous cancellous strip grafts in the treatment of delayed union of long bone fractures. J Bone Joint Surg Br 51:63–75

    PubMed  CAS  Google Scholar 

  • Suger G, Fleischmann W, Hartwig E, Kinzl L (1995) [Open segmental bone transport. A therapeutic alternative in post-traumatic and osteitis soft tissue and bone defects]. Unfallchirurg 98:381–385

    PubMed  CAS  Google Scholar 

  • Sumanasinghe RD, Osborne JA, Loboa EG (2009) Mesenchymal stem cell-seeded collagen matrices for bone repair: effects of cyclic tensile strain, cell density, and media conditions on matrix contraction in vitro. J Biomed Mater Res A 88:778–786

    PubMed  Google Scholar 

  • Takigami H, Kumagai K, Latson L, Togawa D, Bauer T, Powell K, Butler RS, Muschler GF (2007) Bone formation following OP-1 implantation is improved by addition of autogenous bone marrow cells in a canine femur defect model. J Orthop Res 25:1333–1342

    PubMed  Google Scholar 

  • Taylor GI, Miller GD, Ham FJ (1975) The free vascularized bone graft. A clinical extension of microvascular techniques. Plast Reconstr Surg 55:533–544

    PubMed  CAS  Google Scholar 

  • Theos C, Koulouvaris P, Kottakis S, Demertzis N (2008) Reconstruction of tibia defects by ipsilateral vascularized fibula transposition. Arch Orthop Trauma Surg 128:179–184

    PubMed  CAS  Google Scholar 

  • Urist MR (1965) Bone: formation by autoinduction. Science 150:893–899

    PubMed  CAS  Google Scholar 

  • Vacanti CA, Bonassar LJ, Vacanti MP, Shufflebarger J (2001) Replacement of an avulsed phalanx with tissue-engineered bone. N Engl J Med 344:1511–1514

    PubMed  CAS  Google Scholar 

  • Wagner AJ, Bayles SW (2008) The angular branch: maximizing the scapular pedicle in head and neck reconstruction. Arch Otolaryngol Head Neck Surg 134:1214–1217

    PubMed  Google Scholar 

  • Wakitani S, Saito T, Caplan AI (1995) Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 18:1417–1426

    PubMed  CAS  Google Scholar 

  • Warnke PH, Wiltfang J, Springer I, Acil Y, Bolte H, Kosmahl M, Russo PA, Sherry E, Lutzen U, Wolfart S, Terheyden H (2006) Man as living bioreactor: fate of an exogenously prepared customized tissue-engineered mandible. Biomaterials 27:3163–3167

    PubMed  CAS  Google Scholar 

  • Weber BG, Brunner C (1981) The treatment of nonunions without electrical stimulation. Clin Orthop Relat Res 161:24–32

    PubMed  Google Scholar 

  • Wei FC, Chen HC, Chuang CC, Noordhoff MS (1986) Fibular osteoseptocutaneous flap: anatomic study and clinical application. Plast Reconstr Surg 78:191–200

    PubMed  CAS  Google Scholar 

  • Weiland AJ, Moore JR, Daniel RK (1983) Vascularized bone autografts. Experience with 41 cases. Clin Orthop Relat Res 174:87–95

    PubMed  Google Scholar 

  • Wenisch S, Trinkaus K, Hild A, Hose D, Herde K, Heiss C, Kilian O, Alt V, Schnettler R (2005) Human reaming debris: a source of multipotent stem cells. Bone 36:74–83

    PubMed  Google Scholar 

  • Werner CM, Favre P, Lenthe HG van, Dumont CE (2007) Pedicled vascularized rib transfer for reconstruction of clavicle nonunions with bony defects: anatomical and biomechanical considerations. Plast Reconstr Surg 120:173–180

    PubMed  CAS  Google Scholar 

  • Wiss DA, Johnson DL, Miao M (1992) Compression plating for non-union after failed external fixation of open tibial fractures. J Bone Joint Surg Am 74:1279–1285

    PubMed  CAS  Google Scholar 

  • Wood MB (2007) Free vascularized fibular grafting—25 years’ experience: tips, techniques, and pearls. Orthop Clin North Am 38:1–12

    PubMed  Google Scholar 

  • Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer—polycaprolactone in the 21st century. Prog Polym Sci 35:1217–1256

    CAS  Google Scholar 

  • Wu KJ, Hou SX, Zhang WJ, Wang F, Guo JD, Sun DM, Zheng XY (2005) Vascularized pedicle iliac crest for the repair of bone and soft tissue defect of lower extremity. Zhonghua Wai Ke Za Zhi 43:784–787

    PubMed  Google Scholar 

  • Yadav P, Rajput R (2001) Pedicled transfer of vascularized scapular bone graft to the humerus. Plast Reconstr Surg 107:140–142

    PubMed  CAS  Google Scholar 

  • Yang X, Shi W, Du Y, Meng X, Yin Y (2009) Experimental study of repairing bone defect with tissue engineered bone seeded with autologous red bone marrow and wrapped by pedicled fascial flap. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 23:1254–1259

    PubMed  Google Scholar 

  • Yokoyama K, Itoman M, Nakamura K, Tsukamoto T, Saita Y, Aoki S (2001) Free vascularized fibular graft vs. Ilizarov method for post-traumatic tibial bone defect. J Reconstr Microsurg 17:17–25

    PubMed  CAS  Google Scholar 

  • Zarek S, Macias J (2002) The Ilizarov method in the treatment of pseudoarthrosis of the humerus. Ortop Traumatol Rehabil 4:434–440

    PubMed  Google Scholar 

  • Zavan B, Giorgi C, Bagnara GP, Vindigni V, Abatangelo G, Cortivo R (2007) Osteogenic and chondrogenic differentiation: comparison of human and rat bone marrow mesenchymal stem cells cultured into polymeric scaffolds. Eur J Histochem 51 (Suppl 1):1–8

    PubMed  Google Scholar 

  • Zhao Z, Yang D, Ma X, Zhao H, Nie C, Si Z (2009) Successful repair of a critical-sized bone defect in the rat femur with a newly developed external fixator. Tohoku J Exp Med 219:115–120

    PubMed  Google Scholar 

  • Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    PubMed  CAS  Google Scholar 

  • Zwetyenga N, Catros S, Emparanza A, Deminiere C, Siberchicot F, Fricain JC (2009) Mandibular reconstruction using induced membranes with autologous cancellous bone graft and HA-betaTCP: animal model study and preliminary results in patients. Int J Oral Maxillofac Surg 38:1289–1297

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Berner.

Additional information

This project was supported by the German Research Foundation (DFG; BE 4492/2-1).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berner, A., Reichert, J.C., Müller, M.B. et al. Treatment of long bone defects and non-unions: from research to clinical practice. Cell Tissue Res 347, 501–519 (2012). https://doi.org/10.1007/s00441-011-1184-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-011-1184-8

Keywords

Navigation