Skip to main content
Log in

The antiapoptotic gene bcl-2 prevents reactivation of the senescence program induced by the histone deacetylase inhibitor sodium butyrate in rat fibroblasts transformed by the oncogenes E1A and c-Ha-Ras

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

The role of the gene bcl-2 conferring resistance to apoptosis in the activation of the cellular senescence program induced by the histone deacetylase inhibitor (HDACi) sodium butyrate (NaBut) has been studied in transformed rat fibroblasts. The work was carried out in the rat embryo fibroblast cell line transformed by the oncogenes E1A, cHa-Ras, and bcl-2 (ERasBcl cells) resistant to apoptosis. The parent line of E1A-and cHa-Ras-transformed cells (ERas cells) was used as a control. It has been shown that NaBut suppresses the proliferation of ERasBcl cells to a much lesser extent than do the control ERas cells, in spite of the delay in cell cycle progression in the G1 phase for both lines. NaBut-induced hypertrophy is less marked in ERasBcl cells than in ERas cells due to the lower level of activation of the mTORC1 complex controlling protein synthesis and ribosome biogenesis. The activation of mTORC1 was assessed from the phosphorylation of its targets: ribosomal protein S6 and the inhibitor of translation initiation factor eIF4E (4E-BP1). Investigation of the dynamics of the level of one of the major markers of autophagosome formation (protein LC3) has shown the transient character of NaBut-induced accumulation of lipid-bound form LC3-II marking autophagosome membranes in bcl-2-expressing transformants in contrast to the ERas line. In addition, in ERasBcl cells there was no activation of the senescence-associated β-galactosidase (the marker for senescent cells). The results obtained suggest that the high level of expression of bcl-2, which blocks apoptotic cell death, prevents the implementation of the NaBut-induced tumor-suppressive cellular senescence program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, J.M. and Cory, S., The Bcl-2 apoptotic switch in cancer development and therapy, Oncogene, 2007, vol. 26, pp. 1324–1337.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blagosklonny, M.V., Cell senescence and hypermitogenic arrest, EMBO Rep., 2003, vol. 4, pp. 358–362.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein?dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Brown, K., Buchmann, A., and Balmain, A., Carcinogeninduced mutations in the mouse C-Ha-ras gene provide evidence of multiple pathways for tumor progression, Proc. Natl. Acad. Sci., 1990, vol. 87, pp. 538–542.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Campisi, J., Cancer, aging and cellular senescence, In vivo, 1999, vol. 14, pp. 183–188.

    Google Scholar 

  • Campisi, J., Cellular senescence as a tumor-suppressor mechanism, Trends Cell Biol., 2001, vol. 11, pp. 27–31.

    Article  Google Scholar 

  • Chen, R., Zou, Y., WMao, D., Sun, D., Gao, G., Shi, J., Liu, X., Zhu, C., Yang, M., Ye, W., Hao, Q., Li, R., and Yu, L., The general amino acid control pathway regulates mTOR and autophagy during serum/glutamine starvation, J. Cell Biol., 2014, vol. 206, pp. 173–182.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chitikova, Z.V., Gordeev, S.A., Bykova, T.V., Zubova, S.G., Pospelov, V.A., and Pospelova, T.V., Sustained activation of DNA damage response in irradiated apoptosis-resistant cells induces reversible senescence associated with mTOR downregulation and expression of stem cell markers, Cell Cycle, 2014, vol. 13, pp. 1424–1439.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chondrogianni, N., Stratford, F.L., Trougakos, I.P., Friguet, B., Rivett, A.J., and Gonos, E.S., Central role of the proteasome in senescence and survival of human fibroblasts: induction of a senescence-like phenotype upon its inhibition and resistance to stress upon its activation, J. Biol. Chem., 2003, vol. 278, pp. 28026–28037.

    Article  CAS  PubMed  Google Scholar 

  • Copp–, J.P., Desprez, P.Y., Krtolica, A., and Campisi, J., The senescence-associated secretory phenotype: the dark side of tumor suppression, Ann. Rev. Pathol. Mech. Disease, 2010, vol. 5, pp. 99–118.

    Article  Google Scholar 

  • Dimri, G.P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., and Pereira-Smith, O., A biomarker that identifies senescent human cells in culture and in aging skin in vivo, Proc. Natl. Acad. Sci., 1995, vol. 92, pp. 9363–9367.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Downward, J., Ras signalling and apoptosis, Curr. Opin. Genet. Devel., 1998, vol. 8, pp. 49–54.

    Article  CAS  Google Scholar 

  • Egan, D., Kim, J., Shaw, R.J., and Guan, K.L., The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR, Autophagy, 2011, vol. 7, pp. 643–644.

    Article  PubMed  Google Scholar 

  • Gerl, R. and Vaux, D.L., Apoptosis in the development and treatment of cancer, Carcinogenesis, 2004, vol. 26, pp. 263–270.

    Article  PubMed  Google Scholar 

  • Guo, J.Y., Chen, H.Y., Mathew, R., Fan, J., Strohecker, A.M., Karsli-Uzunbas, G., and White, E., Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis, Genes Devel., 2011, vol. 25, pp. 460–470.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hara, T., Takamura, A., Kishi, C., Iemura, S.I., Natsume, T., Guan, J.L., and Mizushima, N., FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells, J. Cell Biol., 2008, vol. 181, pp. 497–510.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kang, H.T., Lee, K.B., Kim, S.Y., Choi, H.R., and Park, S.C., Autophagy impairment induces premature senescence in primary human fibroblasts, PLoS One, 2011, vol. 6, p. 23367e.

    Article  Google Scholar 

  • Kim, M.J., Woo, S.J., Yoon, C.H., Lee, J.S., An, S., Choi, Y.H., and Lee, S.J., Involvement of autophagy in oncogenic K-Ras-induced malignant cell transformation, J. Biol. Chem., 2011, vol. 286, pp. 12924–12932.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuilman, T., Michaloglou, C., Mooi, W.J., and Peeper, D.S., The essence of senescence, Genes Devel., 2010, vol. 24, pp. 2463–2479.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laemmli, V., Cleveage of structual proteins during the assembly of the head of bacteriophage T4, Nature, 1970, vol. 227, pp. 680–685.

    Article  CAS  PubMed  Google Scholar 

  • Lock, R., Roy, S., Kenific, C.M., Su, J.S., Salas, E., Ronen, S.M., Debnath J., Autophagy facilitates glycolysis during ras-mediated oncogenic transformation, Mol. Biol. Cell., 2011, vol. 22, pp. 165–178.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marquez, R.T. and Xu, L., Bcl-2:Beclin 1 complex: multiple, mechanisms regulating autophagy/apoptosis toggle switch, Am. J. Cancer Res., 2012, vol. 2, pp. 214–221.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nazarko, V. and Zhong, Q., ULK1 targets Beclin-1 in autophagy, Nature Cell Biol., 2013, vol. 15, pp. 727–728.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nelioudova, A.M., Tararova, N.D., Aksenov, N.D., Pospelov, V.A., and Pospelova, T.V.,Restoration of G1/S arrest in E1A+cHa-ras-transformed cells by Bcl-2 overex-pression, Cell Cycle, 2004, vol. 11, pp. 1427–1432.

    Article  Google Scholar 

  • Pattingre, S., Tassa, A., Qu, X., Garuti, R., Liang, X.H., Mizushima, N., Packer, M., Schneider, M.D., and Levine, B., Bcl-2 antiapoptotic proteins inhibit Beclin 1dependent autophagy, Cell, 2005, vol. 122, pp. 927–939.

    Article  CAS  PubMed  Google Scholar 

  • Pospelova, T.V., Medvedev, A.V., Kukushkin, A.N., Svetlik-ova, S.B., van der Eb, A.J., Dorsman, J.C., and Pospelov, V.A., E1A+cHa-ras transformed rat embryo fibroblast cells are characterized by high and constitutive DNA binding activities of AP-1 dimers with significantly altered composition, Gene Expression, 1999, vol. 8, pp. 19–32.

    CAS  PubMed  Google Scholar 

  • Rikiishi, H., Autophagic and apoptotic effects of HDAC inhibitors on cancer cells, BioMed. Res. Int., 2011. doi: 10.1155/2011/830260

    Google Scholar 

  • Roach, P., AMPK→ULK1→autophagy, Mol. Cel. Biol., 2011, vol. 31, pp. 3082–3084.

    Article  CAS  Google Scholar 

  • Rubinsztein, D.C., Mari–o, G., and Kroemer, G., Autophagy and aging, Cell, 2011, vol. 146, pp. 682–695.

    Article  CAS  PubMed  Google Scholar 

  • Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D., and Lowe, S.W., Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and P16INK4a, Cell, 1997, vol. 88, pp. 593–602.

    Article  CAS  PubMed  Google Scholar 

  • Shitikova, Z.V., Aksenov, N.D., Pospelov, V.A., and Pospelova, T.V., Sodium butyrate induces cell senescence in rodent transformed cells resistant to apoptosis, Tsitologiia, 2011, vol. 53, no. 3, pp. 277–284.

    PubMed  Google Scholar 

  • Tanida, I., Ueno, T., and Kominami, E., LC3 and autophagy, Methods Mol. Biol., 2008, vol. 445, pp. 77–88.

    CAS  PubMed  Google Scholar 

  • Vicencio, J.M., Galluzzi, L., Tajeddine, N., Ortiz, C., Criollo, A., Tasdemir, E., Morselli, E., Younes, B., Maiuri, M.C., Lavandero, S., and Kroemer, G., Senescence, apoptosis or autophagy?, Gerontology, 2008, vol. 54, pp. 92–99.

    Article  PubMed  Google Scholar 

  • Wang, G.B., Ni, Y.L., Zhou, X.P., and Zhang, W.F., The AKT/mTOR pathway mediates neuronal protective effects of erythropoietin in sepsis, Mol. Cell Biochem., 2014, vol. 385, pp. 125–312.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Wang, X.D., Lapi, E., Sullivan, A., Jia, W., He, Y.W., and Lu, X., Autophagic activity dictates the cellular response to oncogenic Ras, Proc. Natl. Acad. Sci. USA, 2012, vol. 109, pp. 13325–13330.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wei, Y., Sinha, S., and Levine, B., Dual role of JNK1mediated phosphorylation of Bcl-2 in autophagy and apoptosis regulation, Autophagy, 2008, vol. 7, pp. 949–951.

    Article  Google Scholar 

  • Young, A.R.J., Narita, M., Ferreira, M., Kirschner, K., Sadaie, M., Darot, J.F.J., Tavare, S., Arakawa, S., Shimizu, S., and Watt, F.M., Autophagy mediates the mitotic senescence transition, Genes Devel., 2009, vol. 23, pp. 798–803.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zubova, Yu.G., Bykova, T.V., Zubova, S.G., Abramova, M.V., Aksenov, N.D., Pospelov, V.A., and Pospelova, T.V., Induction of premature senescence program by an inhibitor of histone deacetylase sodium butyrate in normal and transformed rat fibroblasts, Tsitologiia,2005, vol. 47, no. 12, pp. 1055–1062.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Gordeev.

Additional information

Original Russian Text © S.A. Gordeev, T.V. Bykova, S.G. Zubova, N.D. Aksenov, T.V. Pospelova, 2015, published in Tsitologiya, 2015, Vol. 57, No. 2, pp. 135–143.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gordeev, S.A., Bykova, T.V., Zubova, S.G. et al. The antiapoptotic gene bcl-2 prevents reactivation of the senescence program induced by the histone deacetylase inhibitor sodium butyrate in rat fibroblasts transformed by the oncogenes E1A and c-Ha-Ras . Cell Tiss. Biol. 9, 182–190 (2015). https://doi.org/10.1134/S1990519X15030050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X15030050

Keywords

Navigation