Skip to main content

Advertisement

Log in

Heat flow in the southern Chile forearc controlled by large-scale tectonic processes

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

Between 33°S and 47°S, the southern Chile forearc is affected by the subduction of the aseismic Juan Fernandez Ridge, several major oceanic fracture zones on the subducting Nazca Plate, the active Chile Ridge spreading centre, and the underthrusting Antarctic Plate. The heat flow through the forearc was estimated using the depth of the bottom simulating reflector obtained from a comprehensive database of reflection seismic profiles. On the upper and middle continental slope along the whole forearc, heat flow is about 30–60 mW m–2, a range of values common for the continental basement and overlying slope sediments. The actively deforming accretionary wedge on the lower slope, however, in places shows heat flow reaching about 90 mW m–2. This indicates that advecting pore fluids from deeper in the subduction zone may transport a substantial part of the heat there. The large size of the anomalies suggests that fluid advection and outflow at the seafloor is overall diffuse, rather than being restricted to individual fault structures or mud volcanoes and mud mounds. One large area with very high heat flow is associated with a major tectonic feature. Thus, above the subducting Chile Ridge at 46°S, values of up to 280 mW m–2 indicate that the overriding South American Plate is effectively heated by subjacent zero-age oceanic plate material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Angermann D, Klotz J, Reigber C (1999) Space-geodetic estimation of the Nazca-South America Euler vector. Earth Planet Sci Lett 171:329–334. doi:10.1016/S0012-821X(99)00173-9

    Article  Google Scholar 

  • Bangs NL, Brown KM (1995) Regional heat flow in the vicinity of the Chile Triple Junction constrained by the depth of the bottom simulating reflector. In: Lewis SD, Behrmann JH, Musgrave RJ et al. (eds) Proc ODP Sci Results 141:253–258

  • Bangs NL, Cande SC (1997) Episodic development of a convergent margin inferred from structures and processes along the southern Chile margin. Tectonics 16:489–503. doi:10.1029/97TC00494

    Article  Google Scholar 

  • Bangs NL, Sawyer DS, Golovchenko X (1993) Free gas at the base of the gas hydrate zone in the vicinity of the Chile triple junction. Geology 21:905–908

    Article  Google Scholar 

  • Behrmann JH, Kopf A (2001) Balance of tectonically accreted and subducted sediment at the Chile Triple Junction. Int J Earth Sci 90:753–768

    Article  Google Scholar 

  • Behrmann JH, Meissl S (2012) Submarine landslides, Gulf of Mexico continental slope: insights into transport processes from fabrics and geotechnical data. In: Yamada Y, Kawamura K, Ikehara K, Ogawa Y, Urgeles R, Mosher D, Chaytor J, Strasser M (eds) Submarine mass movements and their consequences. Springer, Heidelberg, pp 463–474. doi:10.1007/978-94-007-2162-1

    Chapter  Google Scholar 

  • Behrmann JH, Lewis SD, Musgrave R, Bangs N, Bodén P, Brown K, Collombat H, Didenko AN, Didyk BM, Froelich PN, Golovchenko X, Forsythe R, Kurnosov V, Lindsley-Griffin N, Marsaglia K, Osozawa S, Prior D, Sawyer D, Scholl D, Spiegler D, Strand K, Takahashi K, Torres M, Vega-Faundez M, Vergara H, Waseda A (1992) Chile Triple Junction. Proc ODP Init Rep A 141:1–708

    Google Scholar 

  • Behrmann JH, Lewis SD, Cande S, Leg ODP, 141 Scientific Party (1994) Tectonics and geology of spreading ridge subduction at the Chile Triple Junction; a synthesis of results from Leg 141 of the Ocean Drilling Program. Geol Rdsch 83:832–852

    Article  Google Scholar 

  • Berndt C, Bünz S, Clayton T, Mienert J, Saunders M (2004) Seismic character of bottom simulating reflectors: examples from the mid-Norwegian margin. Mar Petrol Geol 21:723–733

    Article  Google Scholar 

  • Bohm M, Luth S, Echtler H, Asch G, Bataille K, Bruhn C, Rietbrock A, Wigger P (2002) The Southern Andes between 36 degrees and 40 degrees S latitude: seismicity and average seismic velocities. Tectonophysics 356:275–289

    Article  Google Scholar 

  • Brown KM, Bangs NL, Froelich PN, Kvenvolden KA (1996) The nature, distribution, and origin of gas hydrate in the Chile Triple Junction region. Earth Planet Sci Lett 139:471–483

    Article  Google Scholar 

  • Burwicz EB, Rüpke LH, Wallmann K (2011) Estimation of the global amount of submarine gas hydrates formed via microbial methane formation based on numerical reaction-transport modeling and a novel parameterization of Holocene sedimentation. Geochim Cosmochim Acta 75:4562–4576. doi:10.1016/j.gca.2011.05.029

    Article  Google Scholar 

  • Campos J, Hatzfeld D, Madariaga R, Lopez G, Kausel E, Zollo A, Iannacone G, Fromm R, Barrientos S, Lyon-Caen H (2002) A seismological study of the 1835 seismic gap in south-central Chile. Phys Earth Planet Interiors 132:177–195. doi:10.1016/S0031-9201(02)00051-1

    Article  Google Scholar 

  • Comte D, Eisenberg A, Lorca E, Pardo M, Ponce L, Saragoni R, Singh SK, Suarez G (1986) The 1985 central Chile earthquake: a repeat of previous great earthquakes in the region? Science 233:449–453. doi:10.1126/science.233.4762.449

    Article  Google Scholar 

  • Contardo X, Cembrano J, Jensen A, Díaz-Naveas J (2008) Tectono-sedimentary evolution of marine slope basins in the Chilean forearc (33°30′–36°50′S): insights into their link with the subduction process. Tectonophysics 459:206–218

    Article  Google Scholar 

  • Contreras-Reyes E, Flueh ER, Grevemeyer I (2010) Tectonic control on sediment accretion and subduction off south central Chile: implications for coseismic rupture processes of the 1960 and 2010 megathrust earthquakes. Tectonics 29, TC6018. doi:10.1029/2010TC002734

    Article  Google Scholar 

  • Davies JH, Davies DR (2010) Earth’s surface heat flux. Solid Earth 1:5–24

    Article  Google Scholar 

  • Diaz-Naveas J (1999) Sediment subduction and accretion at the Chilean convergent margin between 35° and 40°S. PhD Dissertation, University of Kiel, Kiel

  • Diaz-Naveas J (2007) Preliminary seismic and bathymetric results of VG06 cruise off Central Chile. In: Abstr Vol Worksh Science and Technology Issues in Methane Hydrate R&D, 5–9 March 2006, Kauai, Hawaii, p 53

  • Dickens GR, Quinby-Hunt MS (1994) Methane hydrate stability in seawater. Geophys Res Lett 21:2115–2118

    Article  Google Scholar 

  • Froelich PN, Kvenvolden KA, Torres ME, Waseda A, Didyk BM Lorenson TD (1995) Geochemical evidence for gas hydrate in sediment near the Chile triple junction. In: Lewis SD, Behrmann JH, Musgrave RJ et al. (eds) Proc ODP Sci Results 141:279–286

  • Ganguly N, Spence GD, Chapman NR, Hyndman RD (2000) Heat flow variations from bottom simulating reflectors on the Cascadia margin. Mar Geol 164:53–68

    Article  Google Scholar 

  • Geersen J, Behrmann JH, Völker D, Krastel S, Ranero CR, Diaz-Naveas J, Weinrebe W (2011a) Active tectonics of the South Chilean marine fore arc (35°S-40°S). Tectonics 30, TC3006. doi:10.1029/2010TC002777

    Article  Google Scholar 

  • Geersen J, Voelker D, Behrmann JH, Reichert C, Krastel S (2011b) Pleistocene giant slope failures offshore Arauco Peninsula, Southern Chile. J Geol Soc 168:1237–1248

    Article  Google Scholar 

  • Geersen J, Völker D, Behrmann JH, Kläschen D, Weinrebe W, Krastel S, Reichert C (2013) Seismic rupture during the 1960 Great Chile and the 2010 Maule earthquakes limited by a giant Pleistocene submarine slope failure. Terra Nova 25:472–477

    Article  Google Scholar 

  • Grevemeyer I, Villinger H (2001) Gas hydrate stability and the assessment of heat flow through continental margins. Geophys J Int 145:647–660

    Article  Google Scholar 

  • Grevemeyer I, Diaz-Naveaz JL, Ranero CR, Villinger HW (2003) Heat flow over the descending Nazca plate in Central Chile, 32°S to 41°S: observations from ODP Leg 202 and the occurrence of natural gas hydrates. Earth Planet Sci Lett 213:285–298

    Article  Google Scholar 

  • Grevemeyer I, Kaul N, Diaz-Naveas JL, Villinger HW, Ranero CR, Reichert C (2005) Heat flow and bending-related faulting at subduction trenches: case studies offshore of Nicaragua and Central Chile. Earth Planet Sci Lett 236:238–248. doi:10.1016/j.epsl.2005.04.048

    Article  Google Scholar 

  • Grevemeyer I, Kaul N, Díaz-Naveas JL (2006) Geothermal evidence for fluid flow through the gas hydrate stability field off Central Chile - transient flow related to large subduction zone earthquakes? Geophys J Int 166:461–468

    Article  Google Scholar 

  • Haberland C, Rietbrock A, Lange D, Bataille K, Hofmann S (2006) Interaction between forearc and oceanic plate at the South-Central Chilean margin as seen in local seismic data. Geophys Res Lett 33, L23302. doi:10.1029/2006GL028189

    Article  Google Scholar 

  • Hackney RI, Echtler HP, Franz G, Götze H-J, Lucassen F, Marchenko D, Melnick D, Meyer U, Schmidt S, Tasárová Z, Tassara A, Wiedecke S (2006) The segmented overriding plate and coupling at the South-Central Chilean margin (36–42°S). In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes – active subduction orogeny. Springer, Berlin, pp 355–374

    Google Scholar 

  • Heberer B, Roeser G, Behrmann JH, Rahn M, Kopf A (2010) Holocene sediments from the Southern Chile Trench: a record of active margin magmatism, tectonics, and paleoseismicity. J Geol Soc 167:539–553. doi:10.1144/0016-76492009-015

    Article  Google Scholar 

  • Hyndman RD, Spence GD (1992) A seismic study of methane hydrate marine bottom-simulating-reflectors. J Geophys Res 97:6683–6698

    Article  Google Scholar 

  • Kaul N, Rosenberger A, Villinger H (2000) Comparison of measured and BSR-derived heat flow values, Makran accretionary prism, Pakistan. Mar Geol 164:37–51

    Article  Google Scholar 

  • Kayen RE, Lee HJ (1991) Pleistocene Slope Instability of gas hydrate-laden sediment on the Beaufort Sea Margin. Mar Geotechnol 10:125–141

    Article  Google Scholar 

  • Klaucke I, Weinrebe W, Linke P, Kläschen D, Bialas J (2012) Sidescan sonar imagery of widespread fossil and active cold seeps along the central Chilean continental margin. Geo-Mar Lett 32(5/6):489–499. doi:10.1007/s00367-012-0283-1

    Article  Google Scholar 

  • Kukowski N, Oncken O (2006) Subduction erosion – the “normal” mode of fore-arc material transfer along the Chilean Margin? In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes – active subduction orogeny. Springer, Berlin, pp 217–236

    Google Scholar 

  • Kvenvolden KA (1998) A primer on the geological occurrence of gas hydrate. In: Henriet J-P, Mienert J (eds) Gas hydrates. Relevance to world margin stability and climate change. Geol Soc Spec Publ 137:9–30

    Article  Google Scholar 

  • Lomnitz C (1970) Major earthquakes and tsunamis in Chile during the period 1535 to 1955. Geol Rdsch 59:938–960. doi:10.1007/BF02042278

    Article  Google Scholar 

  • Maksymowicz A (2013) Reestablishment of an accretionary prism after the subduction of a spreading ridge—constraints by a geometric model for the Golfo de Penas, Chile. Geo-Mar Lett 33(5):345–355. doi:10.1007/s00367-013-0331-5

    Article  Google Scholar 

  • Mienert J, Posewang J, Baumann M (1998) Gas hydrates along the northeastern Atlantic margin: possible hydrate-bound margin instabilities and possible release of methane. In: Henriet J-P, Mienert J (eds) Gas hydrates. Relevance to world margin stability and climate change. Geol Soc Spec Publ 137:275–291

    Article  Google Scholar 

  • Milkov AV (2004) Global estimates of hydrate-bound gas in marine sediments: how much is really out there? Earth-Sci Rev 66:183–197

    Article  Google Scholar 

  • Mix AC, Tiedemann R, Blum P et al (2003) Proc Ocean Drilling Program Initial Reports, vol 202. Ocean Drilling Program, College Station, TX

    Google Scholar 

  • Morales E (2003) Methane hydrates in the Chilean continental margin. Electron J Biotechnol 6(2). http://ejb.ucv.cl/content/vol6/issue2/issues/1/

  • Rehak K, Strecker MR, Echtler HP (2008) Morphotectonic segmentation of an active forearc, 37°–41°S, Chile. Geomorphology 94:98–116

    Article  Google Scholar 

  • Reichert C, Schreckenberger N, SPOC Team (2002) Fahrtbericht SONNE - Fahrt SO-161 Leg 2&3 SPOC, Subduktionsprozesse vor Chile - BMBF-Forschungsvorhaben 03G0161A-Valparaíso 16.10.2001-Valparaíso 29.11.2001. Bundesanst für Geowiss und Rohstoffe, Hannover

  • Ruegg JC, Rudloff A, Vigny C, Madariaga R, de Chabalier JB, Campos J, Kausel E, Barrientos S, Dimitrov D (2009) Interseismic strain accumulation measured by GPS in the seismic gap between Constitución and Concepción in Chile. Phys Earth Planet Interiors 175:78–85. doi:10.1016/j.pepi.2008.02.015

    Article  Google Scholar 

  • Stein CA, Stein S (1992) A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature 359:123–129

    Article  Google Scholar 

  • Tasárová Z (2007) Towards understanding the lithospheric structure of the southern Chilean subduction zone (36°S–42°S) and its role in the gravity field. Geophys J Int 170:995–1014

    Article  Google Scholar 

  • Tebbens SF, Cande SC (1997) Southeast Pacific tectonic evolution from early Oligocene to Present. J Geophys Res Solid Earth 102:12061–12084. doi:10.1029/96JB02582

    Article  Google Scholar 

  • Vargas Cordero I (2009) Gas hydrate occurrence and morphostructures along the Chilean margin. Dissertation. University of Trieste, Trieste

    Google Scholar 

  • Vargas Cordero I, Tinivella U, Accaino F, Loreto MF, Fanucci F, Reichert C (2010a) Analyses of bottom simulating reflections offshore Arauco and Coyhaique (Chile). Geo-Mar Lett 30(3/4):271–281. doi:10.1007/s00367-009-0171-5

    Article  Google Scholar 

  • Vargas Cordero I, Tinivella U, Accaino F, Loreto MF, Fanucci F (2010b) Thermal state and concentration of gas hydrate and free gas of Coyhaique, Chilean Margin (44°30′S). Mar Petrol Geol 27:1148–1156. doi:10.1016/j.marpetgeo.2010.02.011

    Article  Google Scholar 

  • Vargas Cordero I, Tinivella U, Accaino F, Fanucci F, Loreto MF, Lascano ME, Reichert C (2011) Basal and frontal accretion processes versus BSR characteristics along the Chilean margin. J Geol Res 2011:846101. doi:10.1155/2011/846101

    Google Scholar 

  • Villinger H, Tréhu AM, Grevemeyer I (2010) Seafloor marine heat flux measurements and estimation of heat flux from seismic observations of bottom simulating reflectors. In: Riedel M, Willoughby EC, Chopra S (eds) Geophysical characterization of gas hydrates. Society of Exploration Geophysicists, Tulsa, OK, pp 279–300

    Chapter  Google Scholar 

  • Völker D, Wiedicke M, Ladage S, Gaedicke C, Reichert C, Rauch K, Kramer W, Heubeck C (2006) Latitudinal variation in sedimentary processes in the Peru-Chile Trench off Central Chile. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes – active subduction orogeny. Springer, Berlin, pp 193–216

    Google Scholar 

  • Völker D, Geersen J, Behrmann JH, Weinrebe WR (2012) Submarine mass wasting off southern central Chile: distribution and possible mechanisms of slope failure at an active continental margin. In: Yamada Y, Kawamura K, Ikehara K, Ogawa Y, Urgeles R, Mosher D, Chaytor J, Strasser M (eds) Submarine mass movements and their consequences. Springer, Heidelberg, pp 379–389. doi:10.1007/978-94-007-2162-3_34

    Chapter  Google Scholar 

  • von Huene R, Corválan J, Flueh ER, Hinz K, Korstgard J, Ranero CR, Weinrebe W, Scientists CONDOR (1997) Tectonic control of the subducting Juan Fernández Ridge on the Andean margin near Valparaiso, Chile. Tectonics 16:474–488

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the contributors of the programme Hidratos de gas submarinos: una nueva fuente de energía para el siglo XXI (FONDEF Grant D00I11004), who provided the time migrated data from R/V Vidal Gormaz cruises VG02 and 06. We thank GEOMAR for the use of data from R/V Sonne cruises S0161 and SO101. Special thanks are due to Steven Cande and Stephen Lewis, who acquired the openly available data (http://www.ig.utexas.edu/sdc/) of R/V Robert Conrad Cruise RC 2901. Lucia Villar-Muñoz acknowledges tenure of a postgraduate DAAD grant, Heiner Villinger for stimulating input, and an invitation to participate in the ECORD Summer School 2011 at MARUM, Bremen, Germany. Constructive comments from two anonymous reviewers, as well as the guest editor Catherine Pierre and the journal editors were most helpful in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Villar-Muñoz.

Additional information

Responsible guest editor: C. Pierre

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villar-Muñoz, L., Behrmann, J.H., Diaz-Naveas, J. et al. Heat flow in the southern Chile forearc controlled by large-scale tectonic processes. Geo-Mar Lett 34, 185–198 (2014). https://doi.org/10.1007/s00367-013-0353-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-013-0353-z

Keywords

Navigation