Skip to main content

Advertisement

Log in

Linkage between acoustic parameters and seabed sediment properties in the south-western Baltic Sea

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

Acoustic profiling methods are widely used to provide a rapid view into geological structures. For the interpretation of acoustic profiling results (single- and multi-beam), reliable geo-acoustic models are needed. Suitable geo-acoustic models covering a wide range of sediment types do not exist to date for the Baltic Sea. Based on surface sediment datasets, geo-acoustic models have been set up for the prediction of acoustical parameters derived from sedimentological data for south-western Baltic Sea surface sediments. Empirical relationships were created to predict key in situ parameters (p-wave velocity, wet bulk density) from sedimentological core data, notably grain density and water content. The Gassmann-Hamilton equations were used to set up a more generic physically based model. For the first time semi-empirical equations for the calculation of the elastic frame modulus and the solid sediment particle modulus were established by an iterative Gassmann-Hamilton fitting procedure. The resulting models have a remarkably good performance with, for example, a calculated sound velocity accuracy of about 17–32 m s–1 depending on model input data. The acoustic impedance of seafloor sediments can be estimated from single-beam echosounding if the contribution of seafloor reflectivity is extracted from the total acoustic signal. The data reveal a strong linkage between acoustic impedance and selected sediment properties (e.g. grain size, water content). This underlines the potential for effective mapping of seafloor sediment properties (e.g. habitat mapping). Furthermore, these geo-acoustic models can be used by marine geologists for a precise linkage between sediment facies identified in longer cores and corresponding acoustic facies recorded by high-resolution seismic profiling in future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anderson JT, Holliday DV, Kloser R, Reid DG, Simard Y (2008) Acoustic seabed classification: current practice and future directions. ICES J Mar Sci 65:1004–1011

    Article  Google Scholar 

  • Andrén E, Andrén T, Sohlenius G (2000) The Holocene history of the southwestern Baltic Sea as reflected in a sediment core from Bornholm Basin. Boreas 29:233–250

    Article  Google Scholar 

  • Bartholomä A (2006) Acoustic bottom detection and seabed classification in the German Bight, southern North Sea. Geo-Mar Lett 26:177–184

    Article  Google Scholar 

  • Biot MA (1956a) Theory of propagation of elastic waves in a fluid-saturated porous solid I. Low-frequency range. J Acoust Soc Am 28:168–178

    Article  Google Scholar 

  • Biot MA (1956b) Theory of propagation of elastic waves in a fluid-saturated porous solid II. Higher frequency range. J Acoust Soc Am 28:179–191

    Article  Google Scholar 

  • Biot MA (1962) Generalized theory of acoustic propagation in porous dissipative media. J Acoust Soc Am 34:1254–1265

    Article  Google Scholar 

  • Blum P (1997) Physical Properties Handbook: a guide to the shipboard measurement of physical properties of deep-sea cores. ODP Tech Note 26

  • Bobertz B, Harff J (1999) Mapping the sedimentary facies of marginal seas using regionalized classification. In: Proc IAMG’99, 5th Annu Conf International Association for Mathematical Geology, 6–11 August 1999, Trondheim, pp 135–138

  • Bobertz B, Harff J (2004) Sediment facies and hydrodynamic setting: a study in the south western Baltic Sea. Ocean Dynam 54:39–48

    Article  Google Scholar 

  • Bobertz B, Harff J, Kramarska R, Lemke W, Przezdziecki P, Uszinowicz S, Zachowicz J (2006) Surface sediments of the south-western Baltic Sea. Gdanks, Polish Geological Institute, Baltic Sea Research Institute Warnemünde

  • Chotiros NP, Isakson MJ (2004) A broadband model of sandy ocean sediments: Biot-Stoll with contact squirt flow and shear drag. J Acoust Soc Am 116:2011–2022

    Article  Google Scholar 

  • DIN18124 (2011) Baugrund, Untersuchung von Bodenproben - Bestimmung der Korndichte - Kapillarpyknometer, Weithalspyknometer, Gaspyknometer. Deutsches Institut für Normung eV (DIN), April 2011, Beuth Verlag, Berlin

  • Du D, Chen Y (2007) Investigation of the relationship between seafloor echo strength and sediment type—a case study in Jiaozgou Bay, China. Geo-Mar Lett 27:339–344

    Article  Google Scholar 

  • Dvorkin J, Nur A (1993) Dynamic poroelasticity: a unified model with the squirt and the Biot mechanism. Geophysics 58:524–533

    Article  Google Scholar 

  • Endler R (2009) Sediment physical properties of the DYNAS study area. J Mar Systems 75:317–329

    Article  Google Scholar 

  • Eronen M, Ristaniemi O, Lange D (1990) Analyses of a sediment core from the Mecklenburg Bay, with a discussion on the early Holocene history of the southern Baltic Sea. Geol Foren Forhandl (Stockholm) 112(1):1–8

    Article  Google Scholar 

  • Figge K (1981) Sedimentverteilung in der Deutschen Bucht Maßstab 1:250000. Deutsche Hydrographische Institut, Hamburg, Karte Nr. 2900

  • Folk RL (1954) The distinction between grain size and mineral composition in sedimentary rock nomenclature. J Geol 62(4):344–359

    Article  Google Scholar 

  • Folk RL (1966) A review of grain-size parameters. Sedimentology 6:73–93

    Article  Google Scholar 

  • Gassmann F (1951) Elastic waves through a packing of spheres. Geophysics 16(4):673–685. doi:10.1190/1.1437718

    Article  Google Scholar 

  • Hamilton EL (1971a) Elastic properties of marine sediments. J Geophys Res 76:579–604

    Article  Google Scholar 

  • Hamilton EL (1971b) Prediction of in-situ acoustic and elastic properties of marine sediments. Geophysics 36:266–284

    Article  Google Scholar 

  • Hamilton EL (1980) Geoacoustic modeling of the sea floor. J Acoust Soc Am 68(5):1313–1340

    Article  Google Scholar 

  • Hamilton EL, Bachman RT (1982) Sound velocity and related properties of marine sediments. J Acoust Soc Am 72:1891–1904

    Article  Google Scholar 

  • Hamilton EL, Shumway G, Menard HW, Shipek CJ (1956) Acoustic and other physical properties of shallow-water sediments off San Diego. J Acoust Soc Am 28:1–15

    Article  Google Scholar 

  • Jackson DR, Richardson MD (2007) High-frequency seafloor acoustics. Springer, New York

    Book  Google Scholar 

  • Jensen JB (1995) A Baltic Ice Lake transgression in the southwestern Baltic: evidence from Fakse Bugt, Denmark. Quat Int 27:59–68

    Article  Google Scholar 

  • Jensen JB, Bennike O, Witkowski A, Lemke W, Kuijpers A (1997) The Baltic Ice Lake in the southwestern Baltic: sequence-, chrono- and biostratigraphy. Boreas 26:217–236

    Article  Google Scholar 

  • Krauss W, Brügge B (1991) Wind-produced water exchange between the deep basins of the Baltic. J Phys Oceanogr 21:373–384

    Article  Google Scholar 

  • Krumbein WC (1938) Size frequency distributions of sediments and the normal phi curve. J Sediment Petrol 8:84–90

    Google Scholar 

  • Lass HU, Mohrholz V (2003) On dynamics and mixing of inflowing saltwater in the Arkona Sea. J Geophys Res 108(C2):3042. doi:10.1029/2002JC001465

    Article  Google Scholar 

  • Leipe T, Löffler A, Bahlo R, Zahn W (1999) Automated particle analysis of water samples by scanning electron microscopy and X-ray microanalysis. Vom Wasser 93:21–37

    Google Scholar 

  • Leipe T, Tauber F, Vallius H, Kabel Virtasalo JJ, Uścinowicz S, Kowalski N, Hille S, Lindgren S, Myllyvirta T (2011) Particulate organic carbon (POC) in surface sediments of the Baltic Sea. Geo-Mar Lett 31:175–188

    Article  Google Scholar 

  • Lemke W (1998) Sedimentation und paläogeographische Entwicklung im westlichen Ostseeraum (Mecklenburger Bucht bis Arkona Becken) vom Ende der Weichselvereisung bis zur Litorinatransgression. Marine Science Reports Institut für Ostseeforschung - Baltic Sea Research Institute Warnemünde, Germany, vol 31

  • Leurer KC (1997) Attenuation in fine-grained marine sediments: extension of the Biot-Stoll model by the “effective grain model” (EGM). Geophysics 62:1465–1479

    Article  Google Scholar 

  • Liljebladh B, Stigebrandt A (1996) Observations of the deepwater flow into the Baltic Sea. J Geophys Res 101(C4):8895–8911

    Article  Google Scholar 

  • Lu T, Bryant WR, Slowey NC (1998) Regression analysis of physical and geotechnical properties of surface marine sediments. Mar Georesources Geotechnol 16:201–220

    Article  Google Scholar 

  • Lurton X (2002) An introduction to underwater acoustics, principles and applications. Springer, Berlin

    Google Scholar 

  • Manheim FT, Dwight L, Belastock RA (1974) Porosity, density, grain density, and related physical properties of sediments from the Red Sea drill cores. In: DSDP Initial Report vol XXIII part 3, chap 26, pp 887–907

  • Mavko G, Mukerji T, Dvorkin J (1999) The rock physics handbook: tools for seismic analysis in porous media. Cambridge University Press, Cambridge

    Google Scholar 

  • Mendoza U, Neto AA, Abuchacra RC, Barbosa CF, Figueiredo AG, Gomes MC, Belem AL, Capilla R, Albuquerque ALS (2014) Geoacoustic character, sedimentology and chronology of a cross-shelf Holocene sediment deposit off Cabo Frio, Brazil (southwest Atlantic Ocean). Geo-Mar Lett 34:297–314

    Article  Google Scholar 

  • Miltner A, Emeis K-C (2000) Origin and transport of terrestrial organic matter from the Oder lagoon to the Arkona Basin, Southern Baltic Sea. Org Geochem 31:57–66

    Article  Google Scholar 

  • Mogollón JM, Dale AW, Jensen JB, Schlüter M, Regnier P (2013) A method for the calculation of anaerobic oxidation of methane rates across regional scales: an example from the Belt Seas and The Sound (North Sea–Baltic Sea transition). Geo-Mar Lett 33:299–310

    Article  Google Scholar 

  • Morgan PP (1998) Seawater. A library of MATLAB computational routines for the properties of seawater. http://www.marine.csiro.au/, accessed 4 November 2013

  • Olea R, Bobertz B, Harff J, Endler R (2008) Enhancement of seafloor maps for Mecklenburg Bay, Baltic Sea using proxy variables. In: Bonham-Carter GF, Cheng Q (eds) Progress in geomathematics. Springer, Berlin, pp 457–480

    Chapter  Google Scholar 

  • Orlowski A (2007) Acoustic seabed classification applied to Baltic benthic habitat studies: a new approach. Oceanologia 49(2):229–243

    Google Scholar 

  • Ostrovsky I, Tęgowski J (2010) Hydroacoustic analysis of spatial and temporal variability of bottom sediment characteristics in Lake Kinneret in relation to water level fluctuation. Geo-Mar Lett 30:261–269

    Article  Google Scholar 

  • Parnum I, Siwabessy J, Gavrilov A, Parsons M (2009) A comparison of single beam and multibeam sonar systems in seafloor habitat mapping. In: Proc 3rd Int Conf Exhib Underwater Acoustic Measurements: Technologies and Results, 21–26 June 2009, Kos, Greece

  • Richardson MD, Briggs KB (1993) On the use of acoustic impedance values to determine sediment properties. In: Acoustic Classification and Mapping of the Seabed, Underwater Acoustics Group Conf, 14–16 April 1993, University of Bath, Proc Institute of Acoustics, vol 15, part 2, pp 15–25

  • Richardson MD, Bryant WR (1996) Benthic boundary layer processes in coastal environments. Geo-Mar Lett 16:133–278

    Article  Google Scholar 

  • Schwartz BM (1985) Grain density measurements of ash flow tuffs: an experimental comparison of water immersion and gas intrusion pycnometer techniques. Sandia National Laboratories, Albuquerque, NM, report SAND 83-1327

  • Snellen M, Siemes K, Simons DG (2011) Model-based sediment classification using single-beam echo sounder signals. J Acoust Soc Am 129:2878–2888

    Article  Google Scholar 

  • Stoll RD (1974) Acoustic waves in saturated sediments. In: Hampton L (ed) Physics of sound in marine sediments. Plenum Press, New York, pp 19–39

    Chapter  Google Scholar 

  • Stoll RD (1989) Sediment acoustics. Springer, Berlin

    Google Scholar 

  • Tauber F (2012) Meeresbodenrelief in der deutschen Ostsee. Map 1:100 000. Bundesamt für Seeschifffahrt und Hydrographie, Hamburg

  • Tauber F, Lemke W (1995) Map of sediment distribution in the Western Baltic Sea (1:100,000), Sheet “Darß”. Ocean Dynam 47(3):171–178

    Google Scholar 

  • Tauber F, Seifert T (2010) Relief map of the Baltic Sea. In: Vlasov N (ed) HELCOM Atlas of the Baltic Sea. Baltic Marine Environment Protection Commission - Helsinki Commission, no 25

  • Tęgowski J (2005) Acoustical classification of the bottom sediments in the southern Baltic Sea. Quat Int 130:153–161

    Article  Google Scholar 

  • Ulyanova M, Sivkov V, Kanapatskij T, Pimenov N (2014) Seasonal variations in methane concentrations and diffusive fluxes in the Curonian and Vistula lagoons, Baltic Sea. Geo-Mar Lett 34:231–240

    Article  Google Scholar 

  • Ward JH (1963) Hierarchical grouping methods to optimize an objective function. J Am Stat Assoc 58:236–244

    Article  Google Scholar 

  • Wölfl A-C, Lim CH, Hass HC, Lindhorst S, Tosonotto G, Lettmann KA, Kuhn G, Wolff J-O, Abele D (2014) Distribution and characteristics of marine habitats in a subpolar bay based on hydroacoustics and bed shear stress estimates—Potter Cove, King George Island, Antarctica. Geo-Mar Lett 34:435–446

    Article  Google Scholar 

  • Yang Y (2004) Measuring mudstone properties in the laboratory. BP best practice Pro Quant Consultants. http://www.igutexasedu/people/staff/flemings/tutorials/tech/MeasuringMudstoneProperties.pdf, accessed 6 February 2012

Download references

Acknowledgements

This study was carried out within the framework of the IS-Sedilab (In Situ Sediment Laboratory) project funded by the German Federal Ministry of Education and Research (grant no. 03F0630). Older data and sediment samples were taken from former projects also funded by the German Federal Ministry of Education and Research: BONUS - BALTIC GAS (grant no. 03F0488B), and DYNAS (Dynamics of Natural and Anthropogenic Sedimentation, grant no. 03F0280A). The authors acknowledge constructive comments from C. Hass, an anonymous reviewer and the journal editors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Endler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Endler, M., Endler, R., Bobertz, B. et al. Linkage between acoustic parameters and seabed sediment properties in the south-western Baltic Sea. Geo-Mar Lett 35, 145–160 (2015). https://doi.org/10.1007/s00367-015-0397-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-015-0397-3

Keywords

Navigation