Skip to main content
Log in

Can hydrocarbons entrapped in seep carbonates serve as gas geochemistry recorder?

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

The geochemistry of seep gases is useful for an understanding of the local petroleum system. Here it was tested whether individual light hydrocarbons in seep gases are representatively entrapped in authigenic carbonates that formed near active seep sites. If applicable, it would be possible to extract geochemical information not only on the origin but also on the thermal maturity of the hydrocarbon source rocks from the gases entrapped in carbonates in the past. Respective data could be used for a better understanding of paleoenvironments and might directly serve as calibration point for, amongst others, petroleum system modeling. For this approach, (sub)-recent seep carbonates from the Black Sea (Paleodnjepr region and Batumi seep area), two sites of the Campeche Knoll region in the Gulf of Mexico, and the Venere mud volcano (Mediterranean Sea) were selected. These seep carbonates derive from sites for which geochemical data on the currently seeping gases exist. During treatment with phosphoric acid, methane and higher hydrocarbons were released from all carbonates, but in low concentrations. Compositional studies demonstrate that the ratio of methane to the sum of higher hydrocarbons (C1/(C2+C3)) is (partly strongly) positively biased in the entrapped gas fraction. δ13C values of C1 were determined for all samples and, for the samples from the Gulf of Mexico and the Mediterranean Sea, also of C2 and C3. The present dataset from six seep sites indicates that information on the seeped methane can be—although with a scatter of several permil—recorded in seep carbonate matrices, but other valuable information like the composition and δ13C of ethane and propane appears to be modified or lost during, for example, enclosure or at an early stage of diagenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abrams MA (2005) Significance of hydrocarbon seepage relative to petroleum generation and entrapment. Mar Petrol Geol 22:457–477. https://doi.org/10.1016/j.marpetgeo.2004.08.003

    Article  Google Scholar 

  • Abrams MA (2017) Evaluation of near-surface gases in marine sediments to assess subsurface petroleum gas generation and entrapment. Geosciences 7. https://doi.org/10.3390/geosciences7020035

  • Abrams MA, Dahdah NF (2010) Surface sediment gases as indicators of subsurface hydrocarbons – examining the record in laboratory and field studies. Mar Petrol Geol 27:273–284. https://doi.org/10.1016/j.marpetgeo.2009.08.005

    Article  Google Scholar 

  • Aloisi G, Bouloubassi I, Heijs SK, Pancost RD, Pierre C, Sinninghe Damsté JS, Gottschal JC, Forney LJ, Rouchy JM (2002) CH4-consuming microorganisms and the formation of carbonate crusts at cold seeps. Earth Planet Sci Lett 203:195–203

    Article  Google Scholar 

  • Bahr A, Pape T, Bohrmann G, Mazzini A, Haeckel M, Reitz A, Ivanov M (2009) Authigenic carbonate precipitates from the NE Black Sea: a mineralogical, geochemical, and lipid biomarker study. Int J Earth Sci 98:677–695

    Article  Google Scholar 

  • Bayon G, Loncke L, Dupré S, Caprais JC, Ducassou E, Duperron S, Etoubleau J, Foucher JP, Fouquet Y, Gontharet S, Henderson GM, Huguen C, Klaucke I, Mascle J, Migeon S, Olu-Le Roy K, Ondréas H, Pierre C, Sibuet M, Stadnitskaia A, Woodside J (2009) Multi-disciplinary investigation of fluid seepage on an unstable margin: the case of the Central Nile deep sea fan. Mar Geol 261:92–104. https://doi.org/10.1016/j.margeo.2008.10.008

    Article  Google Scholar 

  • Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325:184–187

    Article  Google Scholar 

  • Bernard B, Brooks JM, Sackett WM (1977) A geochemical model for characterization of hydrocarbon gas sources in marine sediments. Proc Annu Offshore Technol Conf 3:435–438

    Google Scholar 

  • Birgel D, Himmler T, Freiwald A, Peckmann J (2008) A new constraint on the antiquity of anaerobic oxidation of methane: late Pennsylvanian seep limestones from southern Namibia. Geology 36:543–546. https://doi.org/10.1130/g24690a.1

    Article  Google Scholar 

  • Blumenberg M, Seifert R, Reitner J, Pape T, Michaelis W (2004) Membrane lipid patterns typify distinct anaerobic methanotrophic consortia. PNAS 101:11111–11116

    Article  Google Scholar 

  • Blumenberg M, Lutz R, Schlömer S, Krüger M, Scheeder G, Berglar K, Heyde I, Weniger P (2016) Hydrocarbons from near-surface sediments of the Barents Sea north of Svalbard – indication of subsurface hydrocarbon generation? Mar Petrol Geol 76:432–443. https://doi.org/10.1016/j.marpetgeo.2016.05.031

    Article  Google Scholar 

  • Bohrmann G and The shipboard party (2015) Report and preliminary results of R/V METEOR cruise M112, dynamic of mud volcanoes and seeps in the calabrian accretionary prism, Ionian Sea, Catania (Italy) – Catania (Italy), November 6 – December 15, 2014. Berichte, MARUM – Zentrum für Marine Umweltwissenschaften, Fachbereich Geowissenschaften, Universität Bremen, No. 306. urn:nbn:de:gbv:46-00104282-14

  • Bohrmann G, Greinert J, Suess E, Torres M (1998) Authigenic carbonates from the Cascadia subduction zone and their relation to gas hydrate stability. Geology 26:647–650

    Article  Google Scholar 

  • Brekke T, Lønne Ø, Ohm SE (1997) Light hydrocarbon gases in shallow sediments in the northern North Sea. Mar Geol 137:81–108

    Article  Google Scholar 

  • Campbell KA, Farmer JD, Des Marais D (2002) Ancient hydrocarbon seeps from the Mesozoic convergent margin of California: carbonate geochemistry, fluids and palaeoenvironments. Geofluids 2:63–94

    Article  Google Scholar 

  • Ceramicola S, Praeg D, Cova A, Accettella D, Zecchin M (2014) Seafloor distribution and last glacial to postglacial activity of mud volcanoes on the Calabrian accretionary prism, Ionian Sea. Geo-Mar Lett 34:111–129

    Article  Google Scholar 

  • Devol AH, Anderson JJ, Kuivila K, Murray JW (1984) A model for coupled sulfate reduction and methane oxidation in the sediments of Saanich inlet. Geochim Cosmochim Acta 48:993–1004

    Article  Google Scholar 

  • Ettwig KF, Shima S, van de Pas-Schoonen KT, Kahnt J, Medema MH, Den Camp HJM O, MSM J, Strous M (2008) Denitrifying bacteria anaerobically oxidize methane in the absence of archaea. Environ Microbiol 10:3164–3173

    Article  Google Scholar 

  • Faber E, Stahl W (1983) Analytical procedure and results of an isotope geochemical survey in an area of the British North Sea. Geol Soc Lond, Spec Publ 12:51–63

    Article  Google Scholar 

  • Faber E, Stahl WJ, Whiticar MJ, Lietz J, Brooks JM (1990) Thermal hydrocarbons in Gulf Coast sediments. In: 9th Annu res Conf Gulf Coast oils and gases: their characteristics, origin, distribution, and exploration and production significance, pp 297–308

  • Faber E, Berner U, Hollerbach A, Gerling P (1997) Isotope geochemistry in surface exploration for hydrocarbons. Geol Jahrb D103:103–127

    Google Scholar 

  • Faber E, Schmidt M, Feyzullayev A (2015) Geochemical hydrocarbon exploration - insights from stable isotope models. Oil Gas Sci Technol 2:93–98

  • Formolo MJ, Lyons TW, Zhang CL, Kelley C, Sassen R, Horita J, Cole DR (2004) Quantifying carbons sources in the formation of authigenic carbonates at gas hydrate sites in the Gulf of Mexico. Chem Geol 205:253–264

    Article  Google Scholar 

  • Hantschel T, Kauerauf AI (2009) Fundamentals of basin and petroleum systems modeling. Springer, Berlin

    Google Scholar 

  • Hayes J (1983) Practice and principles in biosynthetic processes. In: Meinschein WG (ed) Organic geochemistry of contemporaneous and ancient sediments. Great lakes section. SPEM, Bloomington, pp 5–31

    Google Scholar 

  • Head IM, Jones DM, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature 426:344–352

    Article  Google Scholar 

  • Himmler T, Birgel D, Bayon G, Pape T, Ge L, Bohrmann G, Peckmann J (2015) Formation of seep carbonates along the Makran convergent margin, northern Arabian Sea and a molecular and isotopic approach to constrain the carbon isotopic composition of parent methane. Chem Geol 415:102–117

    Article  Google Scholar 

  • Ijiri A, Tsunogai U, Gamo T, Nakagawa F, Sakamoto T, Saito S (2009) Enrichment of adsorbed methane in authigenic carbonate concretions of the Japan Trench. Geo-Mar Lett 29:301–308

    Article  Google Scholar 

  • Ivanov MV, Pimenov NV, Rusanov II, Lein AY (2002) Microbial processes of the methane cycle at the north-western shelf of the Black Sea. Estuar. Coast Shelf Sci 54:589–599

    Article  Google Scholar 

  • James AT (1983) Correlation of natural gas by use of carbon isotopic distribution between hydrocarbon components. AAPG Bulletin 67:1176–1191

    Google Scholar 

  • Kniemeyer O, Musat F, Sievert SM, Knittel K, Wilkes H, Blumenberg M, Michaelis W, Classen A, Bolm C, Joye SB, Widdel F (2007) Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria. Nature 449:898–901

    Article  Google Scholar 

  • Liebetrau V, Eisenhauer A, Linke P (2010) Cold seep carbonates and associated cold-water corals at the Hikurangi margin, New Zealand: new insights into fluid pathways, growth structures and geochronology. Mar Geol 272:307–318. https://doi.org/10.1016/j.margeo.2010.01.003

    Article  Google Scholar 

  • Luff R, Wallmann K, Aloisi G (2004) Numerical modeling of carbonate crust formation at cold vent sites: significance for fluid and methane budgets and chemosynthetic biological communities. Earth Planet Sci Lett 221:337–353

    Article  Google Scholar 

  • MacDonald IR, Bohrmann G, Escobar E, Abegg F, Blanchon P, Blinova V, Brückmann W, Drews M, Eisenhauer A, Han X, Heeschen K, Meier F, Mortera C, Naehr T, Orcutt B, Bernard B, Brooks J, de Faragó M (2004) Asphalt volcanism and chemosynthetic life in the Campeche knolls, Gulf of Mexico. Science 304:999–1002

    Article  Google Scholar 

  • Michaelis W, Seifert R, Nauhaus K, Treude T, Thiel V, Blumenberg M, Knittel K, Gieseke A, Peterknecht K, Pape T, Boetius A, Amann R, Jørgensen BB, Widdel F, Peckmann J, Pimenov NV, Gulin MB (2002) Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science 297:1013–1015

    Article  Google Scholar 

  • Morales C, Rogov M, Wierzbowski H, Ershova V, Suan G, Adatte T, Föllmi KB, Tegelaar E, Reichart G-J, de Lange GJ, Middelburg JJ, van de Schootbrugge B (2017) Glendonites track methane seepage in Mesozoic polar seas. Geology 45:503–506. https://doi.org/10.1130/g38967.1

    Article  Google Scholar 

  • Murray JW, Grundmanis V, Smethie WM Jr (1978) Interstitial water chemistry in the sediments of Saanich inlet. Geochim Cosmochim Acta 42:1011–1026

    Article  Google Scholar 

  • Naehr TH, Birgel D, Bohrmann G, MacDonald IR, Kasten S (2009) Biogeochemical controls on authigenic carbonate formation at the Chapopote “asphalt volcano”, bay of Campeche. Chem Geol 266:399–411

    Article  Google Scholar 

  • Niemann H, Elvert M (2008) Diagnostic lipid biomarker and stable carbon isotope signatures of microbial communities mediating the anaerobic oxidation of methane with sulphate. Org Geochem 39:1668–1677

    Article  Google Scholar 

  • Panieri G, Polonia A, Lucchi RG, Zironi S, Capotondi L, Negri A, Torelli L (2013) Mud volcanoes along the inner deformation front of the Calabrian arc accretionary wedge (Ionian Sea). Mar Geol 336:84–98

    Article  Google Scholar 

  • Pape T, Blumenberg M, Seifert R, Egorov VN, Gulin SB, Michaelis W (2005) Lipid geochemistry of methane-seep-related Black Sea carbonates. Palaeogeogr Palaeoclimatol Palaeoecol 227:31–47

    Article  Google Scholar 

  • Pape T, Bahr A, Rethemeyer J, Kessler JD, Sahling H, Hinrichs K-U, Klapp SA, Reeburgh WS, Bohrmann G (2010) Molecular and isotopic partitioning of low-molecular-weight hydrocarbons during migration and gas hydrate precipitation in deposits of a high-flux seepage site. Chem Geol 269:350–363

    Article  Google Scholar 

  • Peckmann J, Thiel V (2004) Carbon cycling at ancient methane-seeps. Chem Geol 205:443–467

    Article  Google Scholar 

  • Peckmann J, Birgel D, Kiel S (2009) Molecular fossils reveal fluid composition and flow intensity at a cretaceous seep. Geology 37:847–850

    Article  Google Scholar 

  • Praeg D, Ceramicola S, Barbieri R, Unnithan V, Wardell N (2009) Tectonically-driven mud volcanism since the late Pliocene on the Calabrian accretionary prism, central Mediterranean Sea. Mar Pet Geol 26:1849–1865

    Article  Google Scholar 

  • Reitner J, Peckmann J, Reimer A, Schumann G, Blumenberg M, Thiel H (2003) Anatomy of methane-derived carbonate concretions and associated microbial communities in Black Sea sediments. Geophys Res Abstr 5:03647

    Google Scholar 

  • Ritger S, Carson B, Suess E (1987) Methane-derived authigenic carbonates formed by subduction-induced pore-water expulsion along the Oregon/Washington margin. Geol Soc Am Bull 98:147–156

    Article  Google Scholar 

  • Rubin-Blum M, Antony CP, Borowski C, Sayavedra L, Pape T, Sahling H, Bohrmann G, Kleiner M, Redmond MC, Valentine DL, Dubilier N (2017) Short-chain alkanes fuel mussel and sponge Cycloclasticus symbionts from deep-sea gas and oil seeps. Nat Microbiol 2:17093. https://doi.org/10.1038/nmicrobiol.2017.93

    Article  Google Scholar 

  • Sahling H, Borowski C, Escobar-Briones E, Gaytán-Caballero A, Hsu C-W, Loher M, MacDonald I, Marcon Y, Pape T, Römer M, Rubin-Blum M, Schubotz F, Smrzka D, Wegener G, Bohrmann G (2016) Massive asphalt deposits, oil seepage, and gas venting support abundant chemosynthetic communities at the Campeche knolls, southern Gulf of Mexico. Biogeosciences 13:4491–4512. https://doi.org/10.5194/bg-13-4491-2016

    Article  Google Scholar 

  • Sassen R, Joye S, Sweet ST, DeFreitas DA, Milkov AV, MacDonald IR (1999) Thermogenic gas hydrates and hydrocarbon gases in complex chemosynthetic communities, Gulf of Mexico continental slope. Org Geochem 30:485–497. https://doi.org/10.1016/S0146-6380(99)00050-9

    Article  Google Scholar 

  • Schmale O, Beaubien SE, Rehder G, Greinert J, Lombardi S (2010) Gas seepage in the Dnepr paleo-delta area (NW-Black Sea) and its regional impact on the water column methane cycle. J Mar Syst 80:90–100. https://doi.org/10.1016/j.jmarsys.2009.10.003

    Article  Google Scholar 

  • Schoell M (1983) Genetic classification of natural gases. AAPG Bulletin 67:2225–2238

    Google Scholar 

  • Schubotz F, Lipp JS, Elvert M, Kasten S, Mollar XP, Zabel M, Bohrmann G, Hinrichs K-U (2011) Petroleum degradation and associated microbial signatures at the Chapopote asphalt volcano, southern Gulf of Mexico. Geochim Cosmochim Acta 75:4377–4398. https://doi.org/10.1016/j.gca.2011.05.025

    Article  Google Scholar 

  • Suess E (2014) Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions. Int J Earth Sci 103:1889–1916. https://doi.org/10.1007/s00531-014-1010-0

    Article  Google Scholar 

  • Ueno Y, Yamada K, Yoshida N, Maruyama S, Isozaki Y (2006) Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature 440:516–519

    Article  Google Scholar 

  • Wacker U, Fiebig J, Tödter J, Schöne BR, Bahr A, Friedrich O, Tütken T, Gischler E, Joachimski MM (2014) Empirical calibration of the clumped isotope paleothermometer using calcites of various origins. Geochim Cosmochim Acta 141:127–144. https://doi.org/10.1016/j.gca.2014.06.004

    Article  Google Scholar 

  • Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291–314

    Article  Google Scholar 

Download references

Acknowledgements

BGR (PANORAMA project) is thanked for financial support, and the crews and captains of research cruises POS317/2, M72/3, M114 are thanked for excellent cooperation during field work. We also thank two anonymous reviewers and the editors Burg W. Flemming and Monique T. Delafontaine for their helpful comments. Jürgen Poggenburg, Daniela Graskamp, Dietmar Laszinski and Petra Adam are acknowledged for analytical support, and Eckhard Faber, Heiko Sahling, and Georg Scheeder for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Blumenberg.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest with third parties.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blumenberg, M., Pape, T., Seifert, R. et al. Can hydrocarbons entrapped in seep carbonates serve as gas geochemistry recorder?. Geo-Mar Lett 38, 121–129 (2018). https://doi.org/10.1007/s00367-017-0522-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-017-0522-6

Navigation