Skip to main content
Log in

Degrading seagrass (Posidonia oceanica) ecosystems: a source of dissolved matter in the Mediterranean

  • SEAGRASS ECOSYSTEMS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Diurnal variation of dissolved oxygen (DO), organic and inorganic carbon (DOC, DIC), nitrogen (DON, DIN), and phosphorus (DOP, DIP) flux across the sediment–water interface was assessed in fish farm impacted and pristine seagrass (Posidonia oceanica) meadows in the Aegean Sea (Greece). DIC consumption decreased by 52% and DO production decreased by 60% in the light, suggesting reduced photosynthetic performance of the plant community under the fish cages probably due to organic matter loading. In light there was 4 and 15 times higher release of dissolved inorganic and organic matter, respectively, compared to dark incubations under the cages, indicating that fish farming impact is more intense during daytime. DO was taken up, while DIC was released in the dark in both stations, representing a direct measure of mineralization. Dissolved inorganic matter flux (as the sum of DIN and DIP fluxes) was positively related to DIC flux, rendering mineralization as the main driver of nutrient flux under the cages. On average, the impacted meadow released DIN and DIP both in light and dark, while efflux of dissolved organic matter (as the sum of DOC, DON, and DOP fluxes) increased by 132% in the light and by 21% in the dark, implying that the degrading seagrass meadow is a source of dissolved matter to the surrounding water. Shoot density and leaf production were negatively correlated with both diel DIN and DIP fluxes, showing that meadow regression is accompanied by DIN and DIP release from the sediment. Hence, nutrient efflux can adequately illustrate meadow deterioration and, therefore, can be used as indicator of P. oceanica community health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Apostolaki, E. T., N. Marba, M. Holmer & I. Karakassis, 2009a. Fish farming enhances biomass and nutrient loss in Posidonia oceanica (L.) Delile. Estuarine Coastal and Shelf Science 81: 390–400.

    Article  Google Scholar 

  • Apostolaki, E. T., N. Marba, M. Holmer & I. Karakassis, 2009b. Fish farming impact on decomposition of Posidonia oceanica litter. Journal of Experimental Marine Biology and Ecology 369: 58–64.

    Article  Google Scholar 

  • Apostolaki, E. T., M. Holmer, N. Marba & I. Karakassis, 2010. Metabolic imbalance in coastal vegetated (Posidonia oceanica) and unvegetated benthic ecosystems. Ecosystems. doi:10.1007/s10021-010-9330-9.

  • Barron, C. & C. M. Duarte, 2009. Dissolved organic matter release in a Posidonia oceanica meadow. Marine Ecology Progress Series 374: 75–84.

    Article  CAS  Google Scholar 

  • Barron, C., C. M. Duarte, M. Frankignoulle & A. V. Borges, 2006. Organic carbon metabolism and carbonate dynamics in a Mediterranean seagrass (Posidonia oceanica) meadow. Estuaries and Coasts 29: 417–426.

    CAS  Google Scholar 

  • Blaabjerg, V., K. N. Mouritsen & K. Finster, 1998. Diel cycles of sulphate reduction rates in sediments of a Zostera marina bed (Denmark). Aquatic Microbial Ecology 15: 97–102.

    Article  Google Scholar 

  • Borg, J. A., A. A. Rowden, M. J. Attrill, P. J. Schembri & M. B. Jones, 2006. Wanted dead or alive: high diversity of macroinvertebrates associated with living and ‘dead’ Posidonia oceanica matte. Marine Biology 149: 667–677.

    Article  Google Scholar 

  • Borowitzka, M. A., P. S. Lavery & M. van Keulen, 2006. Epiphytes of seagrasses. In Larkum, A. W. D., R. J. Orth & C. M. Duarte (eds.), Seagrasses: Biology, Ecology and Conservation. Springer, The Netherlands: 441–461.

    Google Scholar 

  • Brylinsky, M., 1977. Release of dissolved organic matter by some marine macrophytes. Marine Biology 39: 213–220.

    Article  Google Scholar 

  • Burkholder, J. M., D. A. Tomasko & B. W. Touchette, 2007. Seagrasses and eutrophication. Journal of Experimental Marine Biology and Ecology 350: 46–72.

    Article  Google Scholar 

  • Calleja, M. L., C. Barron, J. A. Hale, T. K. Frazer & C. M. Duarte, 2006. Light regulation of benthic sulfate reduction rates mediated by seagrass (Thalassia testudinum) metabolism. Estuaries and Coasts 29: 1255–1264.

    CAS  Google Scholar 

  • Cebrian, J., C. M. Duarte, N. Marba & S. Enriquez, 1997. Magnitute and fate of the production of four co-occuring Western Mediterranean seagrass species. Marine Ecology Progress Series 155: 29–44.

    Article  Google Scholar 

  • Christensen, P. B., S. Rysgaard, N. P. Sloth, T. Dalsgaard & S. Schwaerter, 2000. Sediment mineralization, nutrient fluxes, denitrification and dissimilatory nitrate reduction to ammonium in an estuarine fjord with sea cage trout farms. Aquatic Microbial Ecology 21: 73–84.

    Article  Google Scholar 

  • Dalsgaard, T., 2003. Benthic primary production and nutrient cycling in sediments with benthic microalgae and transient accumulation of macroalgae. Limnology and Oceanography 48: 2138–2150.

    CAS  Google Scholar 

  • Diaz-Almela, E., N. Marba, E. Alvarez, R. Santiago, M. Holmer, A. Grau, R. Danovaro, M. Argyrou, I. Karakassis & C. M. Duarte, 2008. Benthic input rates predict seagrass (Posidonia oceanica) fish farm-induced decline. Marine Pollution Bulletin 56: 1332–1342.

    Article  CAS  PubMed  Google Scholar 

  • Duarte, C. M., 2002. The future of seagrass meadows. Environmental Conservation 29: 192–206.

    Article  Google Scholar 

  • Duarte, C. M., W. C. Dennison, R. J. W. Orth & T. J. B. Carruthers, 2008. The charisma of coastal ecosystems: addressing the imbalance. Estuaries and Coasts: J CERF 31: 233–238.

    Article  Google Scholar 

  • Eyre, B. D. & A. J. P. Ferguson, 2002. Comparison of carbon production and decomposition, benthic nutrient fluxes and denitrification in seagrass, phytoplankton, benthic microalgae- and macroalgae-dominated warm-temperate Australian lagoons. Marine Ecology Progress Series 229: 43–59.

    Article  CAS  Google Scholar 

  • Frankovich, T. A. & J. W. Fourqurean, 1997. Seagrass epiphyte loads along a nutrient availability gradient, Florida Bay, USA. Marine Ecology Progress Series 159: 37–50.

    Article  CAS  Google Scholar 

  • Frederiksen, M., M. Holmer, E. Diaz-Almela, N. Marba & C. M. Duarte, 2007. Sulfide invasion in the seagrass Posidonia oceanica at Mediterranean fish farms: assessment using stable sulfur isotopes. Marine Ecology Progress Series 345: 93–104.

    Article  CAS  Google Scholar 

  • Goodman, J. L., K. A. Moore & W. C. Dennison, 1995. Photosynthetic responses of eelgrass (Zostera marina L.) to light and sediment sulfide in a shallow barrier island lagoon. Aquatic Botany 50: 37–47.

    Article  Google Scholar 

  • Hall, P. O. J. & R. C. Aller, 1992. Rapid, small-volume, flow injection analysis for ΣCO2 and NH4 + in marine and freshwaters. Limnology and Oceanography 37: 1113–1119.

    Article  CAS  Google Scholar 

  • Hansen, J. W., B. Thamdrup & B. B. Jorgensen, 2000. Anoxic incubation of sediment in gas-tight plastic bags: a method for biogeochemical process studies. Marine Ecology Progress Series 208: 273–282.

    Article  Google Scholar 

  • Hemminga, M. A. & C. M. Duarte, 2000. Seagrass Ecology. Cambridge University Press, Cambridge, UK: 298 pp.

    Book  Google Scholar 

  • Holmer, M. & M. Frederiksen, 2007. Stimulation of sulfate reduction rates in Mediterranean fish farm sediments inhabited by the seagrass Posidonia oceanica. Biogeochemistry 85: 169–184.

    Article  CAS  Google Scholar 

  • Holmer, M., F. O. Anderesen, N. Holmboe, E. Kristensen & N. Thongtham, 2001. Spatial and temporal variability in benthic processes along a mangrove-seagrass transect near the Bangrong mangrove, Thailand. Wetlands Ecology and Management 9: 141–158.

    Article  Google Scholar 

  • Holmer, M., N. Marba, J. Terrados, C. M. Duarte & M. D. Fortes, 2002. Impacts of milkfish (Chanos chanos) aquaculture on carbon and nutrient fluxes in the Bolinao area, Philippines. Marine Pollution Bulletin 44: 685–696.

    Article  CAS  PubMed  Google Scholar 

  • Holmer, M., C. M. Duarte & N. Marba, 2003. Sulfur cycling and seagrass (Posidonia oceanica) status in carbonate sediments. Biogeochemistry 66: 223–239.

    Article  CAS  Google Scholar 

  • Holmer, M., M. Argyrou, T. Dalsgaard, R. Danovaro, E. Diaz-Almela, C. M. Duarte, M. Frederiksen, A. Grau, I. Karakassis, N. Marba, S. Mirto, M. Perez, A. Pusceddu & M. Tsapakis, 2008. Effects of fish farm waste on Posidonia oceanica meadows: synthesis and provision of monitoring and management tools. Marine Pollution Bulletin 56: 1618–1629.

    Article  CAS  PubMed  Google Scholar 

  • Ibarra-Obando, S. E., S. V. Smith, M. Poumian-Tapia, V. Camacho-Ibar, J. D. Carriquiry & M. Montes-Hugo, 2004. Benthic metabolism in San Quintin Bay, Baja California, Mexico. Marine Ecology Progress Series 283: 99–112.

    Article  CAS  Google Scholar 

  • Ivancic, I. & D. Deggobis, 1984. An optimal manual procedure for ammonia analysis in natural waters by the indophenol blue method. Water Research 18: 1143–1147.

    Article  CAS  Google Scholar 

  • Karakassis, I., M. Tsapakis, E. Hatziyanni & P. Pitta, 2001. Diel variation of nutrient and chlorophyll in sea bass and sea bream cages in the Mediterranean. Fresenius Environmental Bulletin 10: 278–283.

    CAS  Google Scholar 

  • Lopez y Royo, C., G. Casazza, C. Pergent-Martini & G. Pergent, 2010. A biotic index using the seagrass Posidonia oceanica (BiPo), to evaluate ecological status of coastal waters. Ecological Indicators 10: 380–389.

    Article  CAS  Google Scholar 

  • Marba, N., R. Santiago, E. Diaz-Almela, E. Alvarez & C. M. Duarte, 2006. Seagrass (Posidonia oceanica) vertical growth as an early indicator of fish-farm-derived stress. Estuarine, Coastal and Shelf Science 67: 475–483.

    Article  Google Scholar 

  • Mateo, M. A., J.-L. Sanchez-Lizaso & J. Romero, 2003. Posidonia oceanica “banquettes”: a preliminary assessment of the relevance for meadow carbon and nutrients budget. Estuarine, Coastal and Shelf Science 56: 85–90.

    Article  Google Scholar 

  • Mazzella, L., M. B. Scipione & M. C. Buia, 1989. Spatio-temporal distribution of algal and animal communities in a Posidonia oceanica meadow. Marine Ecology – Publicazioni della Stazione Zoologica di Napoli 10: 107–129.

    Google Scholar 

  • McRoy, C. P. & J. J. Goering, 1974. Nutrient transfer between the seagrass Zostera marina and its epiphytes. Nature 248: 173–174.

    Article  CAS  Google Scholar 

  • Montefalcone, M., 2009. Ecosystem health assessment using the Mediterranean seagrass Posidonia oceanica: a review. Ecological Indicators 9: 595–604.

    Article  Google Scholar 

  • Papageorgiou, N., I. Kalantzi & I. Karakassis, 2010. Effects of fish farming on different sediment types of the Mediterranean Sea. Marine Environmental Research. doi:10.1010/j.marenvres.2009.12.007.

  • Penhale, P. A. & W. O. J. Smith, 1977. Excretion of dissolved organic carbon by eelgrass (Zostera marina) and its epiphytes. Limnology and Oceanography 22: 400–407.

    Article  CAS  Google Scholar 

  • Penhale, P. A. & G. W. Thayer, 1980. Uptake and transfer of carbon and phosphorus by eelgrass (Zostera marina L.) and its epiphytes. Journal of Experimental Marine Biology and Ecology 42: 113–123.

    Article  CAS  Google Scholar 

  • Perez, M., T. Garcia, O. Invers & J. M. Ruiz, 2008. Physiological responses of the seagrass Posidonia oceanica as indicators of fish farm impact. Marine Pollution Bulletin 56: 869–879.

    Article  CAS  PubMed  Google Scholar 

  • Pergent-Martini, C., V. Leoni, V. Pasqualini, G. D. Adrizzone, E. Balestri, R. Bedini, A. Belluscio, T. Belsher, J. Borg, C. F. Boudouresque, S. Boumaza, J. M. Bouquegneau, M. C. Buia, S. Calvo, J. Cebrian, E. Charbonnel, F. Cinelli, A. Cossu, G. Di Maida, B. Dural, P. Francour, S. Gobert, G. Lepoint, A. Meinesz, H. Molenaar, H. M. Mansour, P. Panayotidis, A. Peirano, G. Pergent, L. Piazzi, M. Pirrotta, G. Relini, J. Romero, J. L. Sanchez-Lizaso, R. Semroud, P. Shembri, A. Shili, A. Tomasello & B. Velimirov, 2005. Descriptors of Posidonia oceanica meadows: use and application. Ecological Indicators 5: 213–230.

    Article  Google Scholar 

  • Pergent-Martini, C., C.-F. Boudouresque, V. Pasqualini & G. Pergent, 2006. Impact of fish farming facilities on Posidonia oceanica meadows: a review. Marine Ecology 27: 310–319.

    Article  Google Scholar 

  • Qu, W. C., R. J. Morrison & R. J. West, 2003. Inorganic nutrient and oxygen fluxes across the sediment–water interface in the inshore macrophyte areas of a shallow estuary (Lake Illawarra, Australia). Hydrobiologia 492: 119–127.

    Article  CAS  Google Scholar 

  • Raimbault, P., W. Pouvesle, F. Diaz, N. Garcia & R. Sempere, 1999. Wet-oxidation and automated colorimetry for simultaneous determination of organic carbon, nitrogen and phosphorus dissolved in seawater. Marine Chemistry 66: 161–169.

    Article  CAS  Google Scholar 

  • Risgaard-Petersen, N., T. Dalsgaard, S. Rysgaard, P. B. Christensen, J. Borum, K. J. McGlathery & L. P. Nielsen, 1998. Nitrogen balance of a temperate eelgrass Zostera marina bed. Marine Ecology Progress Series 174: 281–291.

    Article  CAS  Google Scholar 

  • Ruiz, J. M., M. Perez & J. Romero, 2001. Effects of fish farm loadings on seagrass (Posidonia oceanica) distribution, growth and photosynthesis. Marine Pollution Bulletin 42: 749–760.

    Article  CAS  PubMed  Google Scholar 

  • Strickland, J. D. & T. R. Parsons, 1972. A practical handbook of sea-water analysis. Bulletin of Fisheries Research Board of Canada 167: 311.

    Google Scholar 

  • Sugimura, Y. & Y. Suzuki, 1988. A high-temperature catalytic oxidation method for the determination of non-volatile dissolved organic carbon in seawater by direct injection of a liquid sample. Marine Chemistry 24: 105–131.

    Article  CAS  Google Scholar 

  • Welsh, D. T., M. Bartoli, D. Nizzoli, G. Castaldelli, S. A. Riou & P. Viaroli, 2000. Denitrification, nitrogen fixation, community primary productivity and inorganic-N and oxygen fluxes in an intertidal Zostera noltii meadow. Marine Ecology Progress Series 208: 65–77.

    Article  Google Scholar 

  • Yarbro, L. A. & P. R. Carlson, 2008. Community oxygen and nutrient fluxes in seagrass beds of Florida Bay, USA. Estuaries and Coasts 31: 877–897.

    Article  CAS  Google Scholar 

  • Ziegler, S. & R. Benner, 1999a. Dissolved organic carbon cycling in a subtropical seagrass-dominated lagoon. Marine Ecology Progress Series 180: 149–160.

    Article  Google Scholar 

  • Ziegler, S. & R. Benner, 1999b. Nutrient cycling in the water column of a subtropical seagrass meadow. Marine Ecology Progress Series 188: 51–62.

    Article  CAS  Google Scholar 

  • Ziegler, S., E. Kaiser & R. Benner, 2004. Dynamics of dissolved organic carbon, nitrogen and phosphorus in a seagrass meadow of Laguna Madre, Texas. Bulletin of Marine Science 75: 391–407.

    Google Scholar 

Download references

Acknowledgements

This work is part of the IBIS Project, co-financed by E.U.-European Social Fund (75%) and the Greek Ministry of Development-GSRT (25%). Thanks are due to T. Tsagaraki, I. Glabedakis, V. Pefanis-Vassilatos, N. Kouroubalis, V. Stasinos and S. Kiparissis for assistance with sampling, M. Delefose, E. Dafnomili, S. Zivanovic, S. Iliakis, M. Anthoula, Y. Zachioti, A. Androni, E. Krasakopoulou, A. Pavlidou and K. Giamalaki for assistance in chemical analyses, K. Lika for advice in statistical analysis and two anonymous reviewers for helpful comments and criticism on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenia T. Apostolaki.

Additional information

Guest editors: M. Holmer & N. Marbà / Dynamics and functions of seagrass ecosystems

Rights and permissions

Reprints and permissions

About this article

Cite this article

Apostolaki, E.T., Holmer, M., Marbà, N. et al. Degrading seagrass (Posidonia oceanica) ecosystems: a source of dissolved matter in the Mediterranean. Hydrobiologia 649, 13–23 (2010). https://doi.org/10.1007/s10750-010-0255-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0255-2

Keywords

Navigation