Skip to main content
Log in

Larval salamander growth responds to enrichment of a nutrient poor headwater stream

  • Short Research Note
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

While many studies have measured effects of nutrient enrichment on higher trophic levels in grazing food webs, few such studies exist for detritus-based systems. We measured effects of nitrogen and phosphorus addition on growth of larval Eurycea wilderae in a heterotrophic headwater stream using a repeated mark-recapture design. Growth estimates for 208 recaptured larvae (control stream n = 92; treatment stream n = 116) resulted in a growth rate of 0.0027 d−1 in each stream prior to enrichment, whereas during enrichment treatment growth rates (g = 0.0069 d−1 [±0.0019, 95% C.I.]) were significantly higher than control (g = 0.0043 d−1 [±0.0007, 95% C.I.]). Results indicate that E. wilderae growth is tightly linked to the detrital resource and that growth may be indirectly affected by both quantity and quality of detritus. This study provides some of the first evidence that nutrient enrichment of detritus-based systems can influence multiple trophic levels in ways similar to autotrophic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beachy C. K. (1994). Community ecology in streams: effects of two species of predatory salamanders on a prey species of salamander. Herpetologica 50: 129–136

    Google Scholar 

  • Bruce R. C. (1985). Larval period and metamorphosis in the salamander Eurycea bislineata. Herpetologica 41: 19–28

    Google Scholar 

  • Bruce R. C. (1988). An ecological life table for the salamander Eurycea wilderae. Copeia 1988: 15–26

    Article  Google Scholar 

  • Burton T. M. and Likens G. E. (1975). Energy flow and nutrient cycling in salamander populations in the Hubbard Brook Experimental Forest, New Hampshire. Ecology 1975: 1068–1080

    Article  Google Scholar 

  • Burton T. M. (1976). An analysis of the feeding ecology of the salamanders (Amphibia, Urodela) of the Hubbard Brook Experimental Forest, New Hampshire. Journal of Herpetology 10: 187–204

    Article  Google Scholar 

  • Caldwell R. S. and Houtcooper W. C. (1973). Food habitats of larval Eurycea wilderae. Journal of Herpetology 7: 386–388

    Article  Google Scholar 

  • Cross W. F., Benstead J. P., Rosemond A. D. and Wallace J. B. (2003). Consumer-resource stoichiometry in detritus-based streams. Ecology Letters 6: 721–732

    Article  Google Scholar 

  • Cross W. F., Johnson B. R., Wallace J. B. and Rosemond A. D. (2005). Contrasting response of stream detritivores to long-term nutrient enrichment. Limnology and Oceanography 50: 1730–1739

    Article  CAS  Google Scholar 

  • Cross, W. F., J. B. Wallace, A. D. Rosemond & S. L. Eggert, 2006. Whole-system nutrient enrichment increases secondary production in a detritus-based ecosystem. Ecology 87: 1556–1565

    Google Scholar 

  • Deegan L. A. and Peterson B. J. (1992). Whole river fertilization stimulates fish production in an arctic tundra river. Canadian Journal of Fisheries and Aquatic Sciences 49: 1890–1901

    Google Scholar 

  • Elser J. J., Marzoff E. R. and Goldman C. R. (1990). Phosphorus and nitrogen limitation of phytoplankton growth in the freshwaters of North America: a review and critique of experimental enrichments. Canadian Journal of Fisheries and Aquatic Sciences 47: 1468–1477

    Article  CAS  Google Scholar 

  • Greenwood, J. & A. D. Rosemond, 2005. Periphyton response to long-term nutrient enrichment in a shaded headwater stream. Canadian Journal of Fisheries and Aquatic Sciences 62: 2033–2045

    Google Scholar 

  • Gulis V. and Suberkropp K. (2003). Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream. Freshwater Biology 48: 123–134

    Article  Google Scholar 

  • Gulis V., Rosemond A. D., Suberkropp K., Weyers H. S. and Benstead J. P. (2004). Effects of nutrient enrichment on the decomposition of wood and associated microbial activity in streams. Freshwater Biology 49: 1437–1447

    Article  Google Scholar 

  • Hart D. D. and Robinson C. T. (1990). Resource limitation in a stream community: phosphorus enrichments effects on periphyton and grazers. Ecology 71: 1494–1502

    Article  Google Scholar 

  • Johnson B. R. and Wallace J. B. (2002). In situ measurement of larval salamander growth using individuals marked with acrylic polymers. Herpetological Review 33: 29–32

    Google Scholar 

  • Johnson B. R. and Wallace J. B. (2005). Bottom–up limitation of a stream salamander in a detritus-based food web. Canadian Journal of Fisheries and Aquatic Sciences 62: 301–311

    Article  Google Scholar 

  • Johnston N. T., Perrin C. J., Slaney P. A. and Ward B. R. (1990). Increased juvenile salmonid growth by whole-river fertilization. Canadian Journal of Fisheries and Aquatic Sciences 47: 862–872

    Article  Google Scholar 

  • Lugthart, G. J., 1991. Macrofaunal community structure and production in disturbed and undisturbed headwater streams. Ph.D. thesis. University of Georgia, Athens, GA, USA

  • Lugthart G. J. and Wallace J. B. (1992). Effects of disturbance on benthic functional structure and production in mountain streams. Journal of the North American Benthological Society 11: 138–164

    Article  Google Scholar 

  • Pearson R. G. and Connolly N. M. (2000). Nutrient enhancement, food quality and community dynamics in a tropical rainforest stream. Freshwater Biology 43: 31–42

    Article  CAS  Google Scholar 

  • Peterson B. J., Deegan L., Helfrich J., Hobbie J. E., Hullar M., Moller B., Ford T. E., Hershey A., Hiltner A., Kipphut G., Lock M. A., Fiebig D. M., McKinley V., Miller M. C., Vestal J. R., Ventullo R. and Volk G (1993). Biological responses of a tundra river to fertilization. Ecology 74: 653–672

    Article  CAS  Google Scholar 

  • Polis G. A (1994). Food webs, trophic cascades and community structure. Australian Journal of Ecology 19: 121–136

    Article  Google Scholar 

  • Polis G. A. and Strong D. R. (1996). Food web complexity and community dynamics. American Naturalist 147: 813–846

    Article  Google Scholar 

  • Robinson C. T. and Gessner M. O. (2000). Nutrient addition accelerates leaf breakdown in an alpine springbrook. Oecologia 122: 258–263

    Article  Google Scholar 

  • Romanovsky Y. E. and Polishchuk L. V. (1982). A theoretical approach to calculation of secondary production at the population level. Internationale Revue der gesmaten Hydrobiologie 67: 341–359

    Google Scholar 

  • Rosemond A. D., Mulholland P. J. and Elwood J. W. (1993). Top–down and bottom–up control of stream periphyton: effects of nutrients and herbivores. Ecology 74: 1264–1280

    Article  Google Scholar 

  • Rosemond A. D., Pringle C. M., Ramirez A. and Paul M. J. (2001). A test of top–down and bottom–up control in a detritus-based food web. Ecology 82: 2279–2293

    Article  Google Scholar 

  • Scott M. C., Helfman G. S., McTammany M. E., Benfield E. F. and Bolstad P. V (2002). Multiscale influences on physical and chemical stream conditions across the blue ridge landscapes. Journal of the American Water Resources Association 38: 1379–1392

    CAS  Google Scholar 

  • Strong D. R. (1992). Are trophic cascades all wet? Differentiation and donor-control in speciose ecosystems. Ecology 73: 747–754

    Article  Google Scholar 

  • Suberkropp K. and Chauvet E. (1995). Regulation of leaf breakdown by fungi in streams: influences of water chemistry. Ecology 76: 1433–1445

    Article  Google Scholar 

  • Swank, W. T. & D. A. Crossley (eds), 1988. Forest Hydrology and Ecology at Coweeta. Springer-Verlag, Ecological Studies Series Volume 66, Springer-Verlag, New York, New York, USA

  • Tank J. L. and Webster J. R. (1998). Interaction of substrate and nutrient availability on wood biofilm processes in streams. Ecology 79: 2168–2179

    Article  Google Scholar 

  • Voss S. R. (1993). Relationship between stream order and length of larval period in the salamander Eurycea wilderae. Copeia 1993: 736–742

    Article  Google Scholar 

  • Wallace J. B., Whiles M. R., Eggert S., Cuffney T. F., Lugthart G. J. and Chung K (1995). Long-term dynamics of coarse particulate organic matter in three Appalachian Mountain streams. Journal of the North American Benthological Society 14: 217–232

    Article  Google Scholar 

  • Wallace J. B., Eggert S. L., Meyer J. L. and Webster J. R. (1997). Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277: 102–104

    Article  CAS  Google Scholar 

  • Wallace J. B., Eggert S. L., Meyer J. L. and Webster J. R. (1999). Effects of resource limitation on a detrital-based ecosystem. Ecological Monographs 69: 409–442

    Article  Google Scholar 

  • Webster J. R., Gurtz M. E., Haines J. J., Meyer J. L., Swank W. T., Waide J. B. and Wallace J. B. (1983). Stability of stream ecosystems. In: Barnes, J. R. and Minshall, G. W. (eds) Stream Ecology, pp 355–395. Plenum Press, NY

    Google Scholar 

  • Zar J. H. (1996). Biostatistical Analysis. (3rd edn.). Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brent R. Johnson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, B.R., Wallace, J.B., Rosemond, A.D. et al. Larval salamander growth responds to enrichment of a nutrient poor headwater stream. Hydrobiologia 573, 227–232 (2006). https://doi.org/10.1007/s10750-006-0272-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-006-0272-3

Keywords

Navigation