Skip to main content

Advertisement

Log in

A microbial perspective on biological invasions in aquatic ecosystems

  • INVASIVE SPECIES
  • Opinion Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Microorganisms are essential components of all aquatic ecosystems and are primarily responsible for biogeochemical cycles and key environmental processes. Despite their potential to influence the ecological functioning of biological communities and ecosystems at a global scale, the mechanisms of microbial invasions still lack specific and generalizable theories. Here, we review some of the ecological mechanisms, among those relevant under the global change scenario, which may facilitate the spread of microbial invaders, with a specific focus on aquatic prokaryotes (i.e. Bacteria). We summarize a selection of ecological features of vulnerable microbial communities (functional and structural stability, diversity, invasibility, and invasiveness) and environmental stressors for invasions (temperature increase, pollution, nutrients and resources fluctuations, and food web alterations). Owing to the rapid microbial adaptation to laboratory conditions, straightforward experimental approaches appear as suitable and informative tools to explore the invasion mechanisms in artificially assembled communities. We conclude by delineating future research steps required for a better understanding of the potential consequences of microbial invasions in the aquatic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Amend, A. S., T. A. Oliver, L. A. Amaral-Zettler, A. Boetius, J. A. Fuhrman, M. C. Horner-Devine, S. M. Huse, D. B. M. Welch, A. C. Martiny, A. Ramette, L. Zinger, M. L. Sogin & J. B. H. Martiny, 2013. Macroecological patterns of marine bacteria on a global scale. Journal of Biogeography 40: 800–811.

    Article  Google Scholar 

  • Barberan, A., E. O. Casamayor & N. Fierer, 2014. The microbial contribution to macroecology. Frontiers in Microbiology 5: e203.

    Article  Google Scholar 

  • Becks, L., F. M. Hilker, H. Malchow, K. Jurgens & H. Arndt, 2005. Experimental demonstration of chaos in a microbial food web. Nature 435: 1226–1229.

    Article  CAS  PubMed  Google Scholar 

  • Blokesch, M. & G. K. Schoolnik, 2007. Serogroup conversion of Vibrio cholerae in aquatic reservoirs. PLOS Pathogens 3: 733–742.

    Article  CAS  Google Scholar 

  • Blom, J. F. & J. Pernthaler, 2010. Antibiotic effects of three strains of chrysophytes (Ochromonas, Poterioochromonas) on freshwater bacterial isolates. FEMS Microbiology Ecology 71: 281–290.

    Article  CAS  PubMed  Google Scholar 

  • Bohannan, B. J. M. & R. E. Lenski, 2000. Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecology Letters 3: 362–377.

    Article  Google Scholar 

  • Bollens, S. M., J. R. Cordell, S. Avent & R. Hooff, 2002. Zooplankton invasions: a brief review, plus two case studies from the northeast Pacific Ocean. Hydrobiologia 480: 87–110.

    Article  Google Scholar 

  • Callieri, C., G. Corno & R. Bertoni, 2006. Bacterial grazing by mixotrophic flagellates and Daphnia longispina: a comparison in a fishless alpine lake. Aquatic Microbial Ecology 42: 127–137.

    Article  Google Scholar 

  • Capdevila-Arguelles, L. & B. Zilletti, 2010. A perspective on climate change and invasive alien species. Council of Europe Nature and Environment Series 156: 365–417.

    Google Scholar 

  • Chakraborty, A. & B. L. Li, 2010. The role of fluctuating resource supply in a habitat maintained by the competition-colonization trade-off. In Li, B. L. (ed.) Ecological Complexity and Sustainability. Annals of the New York Academy of Sciences 1195: 27–39.

  • Chave, J., H. C. Muller-Landau & S. A. Levin, 2002. Comparing classical community models: theoretical consequences for patterns of diversity. American Naturalist 159: 1–23.

    Article  PubMed  Google Scholar 

  • Colautti, R. I., I. A. Grigorovich & H. J. MacIsaac, 2006. Propagule pressure: a null model for biological invasions. Biological Invasions 8: 1023–1037.

    Article  Google Scholar 

  • Corno, G., 2006. Effects of nutrient availability and Ochromonas sp predation on size and composition of a simplified aquatic bacterial community. FEMS Microbiology Ecology 58: 354–363.

    Article  CAS  PubMed  Google Scholar 

  • Corno, G. & K. Juergens, 2008. Structural and functional patterns of bacterial communities in response to protist predation along an experimental productivity gradient. Environmental Microbiology 10: 2857–2871.

    Article  PubMed  Google Scholar 

  • Corno, G., E. Caravati, C. Callieri & R. Bertoni, 2008. Effects of predation pressure on bacterial abundance, diversity, and size-structure distribution in an oligotrophic system. Journal of Limnology 67: 107–119.

    Article  Google Scholar 

  • Corno, G., J. Villiger & J. Pernthaler, 2013. Coaggregation in a microbial predator-prey system affects competition and trophic transfer efficiency. Ecology 94: 870–881.

    Article  Google Scholar 

  • Croswell, A., E. Amir, P. Teggatz, M. Barman & N. H. Salzman, 2009. Prolonged impact of antibiotics on intestinal microbial ecology and susceptibility to enteric salmonella infection. Infection and Immunity 77: 2741–2753.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Davis, M. A. & M. Pelsor, 2001. Experimental support for a resource-based mechanistic model of invasibility. Ecology Letters 4: 421–428.

    Article  Google Scholar 

  • Davis, M. A., J. P. Grime & K. Thompson, 2000. Fluctuating resources in plant communities: a general theory of invasibility. Journal of Ecology 88: 528–534.

    Article  Google Scholar 

  • Diehl, S. & M. Feissel, 2001. Intraguild prey suffer from enrichment of their resources: a microcosm experiment with ciliates. Ecology 82: 2977–2983.

    Article  Google Scholar 

  • Drake, L. A., M. A. Doblin & F. C. Dobbs, 2007. Potential microbial bioinvasions via ships’ ballast water, sediment, and biofilm. Marine Pollution Bulletin 55: 333–341.

    Article  CAS  PubMed  Google Scholar 

  • Dukes, J. S., 2001. Biodiversity and invasibility in grassland microcosms. Oecologia 126: 563–568.

    Article  Google Scholar 

  • Eisenhauer, N., A. Milcu, A. C. W. Sabais & S. Scheu, 2008. Animal ecosystem engineers modulate the diversity-invasibility relationship. PLOS One 3: e3489.

    Article  PubMed Central  PubMed  Google Scholar 

  • Eisenhauer, N., S. Scheu & A. Jousset, 2012. Bacterial diversity stabilizes community productivity. PLOS One 7: e34517.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eisenhauer, N., W. Schulz, S. Scheu & A. Jousset, 2013. Niche dimensionality links biodiversity and invasibility of microbial communities. Functional Ecology 27: 282–288.

    Article  Google Scholar 

  • Fargione, J. E. & D. Tilman, 2005. Diversity decreases invasion via both sampling and complementarity effects. Ecology Letters 8: 604–611.

    Article  Google Scholar 

  • Fazi, S., S. Amalfitano, C. Piccini, A. Zoppini, A. Puddu & J. Pernthaler, 2008. Colonization of overlaying water by bacteria from dry river sediments. Environmental Microbiology 10: 2760–2772.

    Article  CAS  PubMed  Google Scholar 

  • Fischbach, M. A. & C. T. Walsh, 2009. Antibiotics for emerging pathogens. Science 325: 1089–1093.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fridley, J. D., J. J. Stachowicz, S. Naeem, D. F. Sax, E. W. Seabloom, M. D. Smith, T. J. Stohlgren, D. Tilman & B. Von Holle, 2007. The invasion paradox: reconciling pattern and process in species invasions. Ecology 88: 3–17.

    Article  CAS  PubMed  Google Scholar 

  • Friman, V. P., A. Jousset & A. Buckling, 2014. Rapid prey evolution can alter the structure of predator-prey communities. Journal of Evolutionary Biology 27: 374–380.

    Article  PubMed  Google Scholar 

  • Gatto, M., L. Mari, E. Bertuzzo, R. Casagrandi, L. Righetto, I. Rodriguez-Iturbe & A. Rinaldo, 2013. Spatially explicit conditions for waterborne pathogen invasion. American Naturalist 182: 328–346.

    Article  PubMed  Google Scholar 

  • Gherardi, F., 2006. Crayfish invading Europe: the case study of Procambarus clarkii. Marine and Freshwater Behaviour and Physiology 39: 175–191.

    Article  Google Scholar 

  • Gibbons, S. M., J. G. Caporaso, M. Pirrung, D. Field, R. Knight & J. A. Gilbert, 2013. Evidence for a persistent microbial seed bank throughout the global ocean. Proceedings of the National Academy of Sciences of the United States of America 110: 4651–4655.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gilbert, J. A., D. Field, P. Swift, S. Thomas, D. Cummings, B. Temperton, K. Weynberg, S. Huse, M. Hughes, I. Joint, P. J. Somerfield & M. Muehling, 2010. The taxonomic and functional diversity of microbes at a temperate coastal site: a “multi-omic” study of seasonal and diel temporal variation. PLOS One 5: e15545.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hanson, C. A., J. A. Fuhrman, M. C. Horner-Devine & J. B. H. Martiny, 2012. Beyond biogeographic patterns: processes shaping the microbial landscape. Nature Reviews Microbiology 10: 497–506.

    CAS  PubMed  Google Scholar 

  • Hodgson, D. J., P. B. Rainey & A. Buckling, 2002. Mechanisms linking diversity, productivity and invasibility in experimental bacterial communities. Proceedings of the Royal Society B 269: 2277–2283.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hooper, D. U., F. S. Chapin, J. J. Ewel, A. Hector, P. Inchausti, S. Lavorel, J. H. Lawton, D. M. Lodge, M. Loreau, S. Naeem, B. Schmid, H. Setala, A. J. Symstad, J. Vandermeer & D. A. Wardle, 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs 75: 3–35.

    Article  Google Scholar 

  • Hooper, D. U., E. C. Adair, B. J. Cardinale, J. E. K. Byrnes, B. A. Hungate, K. L. Matulich, A. Gonzalez, J. E. Duffy, L. Gamfeldt & M. I. O’Connor, 2012. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486: 105–129.

    CAS  PubMed  Google Scholar 

  • Hornak, K. & G. Corno, 2012. Every coin has a back side: invasion by Limnohabitans planktonicus promotes the maintenance of species diversity in bacterial communities. PLOS One 7: e51576.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hulme, P. E., W. Nentwig, P. Pysek & M. Vila, 2010. DAISIE: Delivering Alien Invasive Species Inventories for Europe. Atlas of Biodiversity Risk: 134–135.

  • Huston, M. A., 1997. Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia 110: 449–460.

    Article  Google Scholar 

  • Jessup, C. M., S. E. Forde & B. J. M. Bohannan, 2005. Microbial experimental systems in ecology. Advances in Ecological Research 37: 273–307.

    Article  Google Scholar 

  • Jiang, L. & P. J. Morin, 2004. Productivity gradients cause positive diversity–invasibility relationships in microbial communities. Ecology Letters 7: 1047–1057.

    Article  Google Scholar 

  • Jousset, A., N. Eisenhauer, E. Materne & S. Scheu, 2013. Evolutionary history predicts the stability of cooperation in microbial communities. Nature Communications 4: e3573.

    Article  Google Scholar 

  • Jousset, A., B. Schmid, S. Scheu & N. Eisenhauer, 2011a. Genotypic richness and dissimilarity opposingly affect ecosystem functioning. Ecology Letters 14: 537–545.

    Article  CAS  PubMed  Google Scholar 

  • Jousset, A., W. Schulz, S. Scheu & N. Eisenhauer, 2011b. Intraspecific genotypic richness and relatedness predict the invasibility of microbial communities. ISME Journal 5: 1108–1114.

    Article  PubMed Central  PubMed  Google Scholar 

  • Keane, R. M. & M. J. Crawley, 2002. Exotic plant invasions and the enemy release hypothesis. Trends in Ecology & Evolution 17: 164–170.

    Article  Google Scholar 

  • Kuemmerer, K., 2009. Antibiotics in the aquatic environment – a review – part I. Chemosphere 75: 417–434.

    Article  CAS  Google Scholar 

  • Ladau, J., T. J. Sharpton, M. M. Finucane, G. Jospin, S. W. Kembel, J. O’Dwyer, A. F. Koeppel, J. L. Green & K. S. Pollard, 2013. Global marine bacterial diversity peaks at high latitudes in winter. ISME Journal 7: 1669–1677.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Langenheder, S., M. T. Bulling, M. Solan & J. I. Prosser, 2010. Bacterial biodiversity-ecosystem functioning relations are modified by environmental complexity. PLOS One 5: e10834.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lawrence, J. E., 2008. Furtive foes: algal viruses as potential invaders. Ices Journal of Marine Science 65: 716–722.

    Article  Google Scholar 

  • Lennon, J. T. & S. E. Jones, 2011. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nature Reviews Microbiology 9: 119–130.

    Article  CAS  PubMed  Google Scholar 

  • Levine, J. M., 2000. Species diversity and biological invasions: relating local process to community pattern. Science 288: 852–854.

    Article  CAS  PubMed  Google Scholar 

  • Li, W. & M. H. H. Stevens, 2012. Fluctuating resource availability increases invasibility in microbial microcosms. Oikos 121: 435–441.

    Article  Google Scholar 

  • Lindstrom, E. S. & O. Ostman, 2011. The importance of dispersal for bacterial community composition and functioning. PLOS One 6: e25883.

    Article  PubMed Central  PubMed  Google Scholar 

  • Litchman, E., 2010. Invisible invaders: non-pathogenic invasive microbes in aquatic and terrestrial ecosystems. Ecology Letters 13: 1560–1572.

    Article  PubMed  Google Scholar 

  • Lodge, D. M., 1993. Biological invasions – lessons for ecology. Trends in Ecology & Evolution 8: 133–137.

    Article  CAS  Google Scholar 

  • Logares, R., E. S. Lindstrom, S. Langenheder, J. B. Logue, H. Paterson, J. Laybourn-Parry, K. Rengefors, L. Tranvik & S. Bertilsson, 2013. Biogeography of bacterial communities exposed to progressive long-term environmental change. ISME Journal 7: 937–948.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Loreau, M. & N. Mouquet, 1999. Immigration and the maintenance of local species diversity. American Naturalist 154: 427–440.

    Article  PubMed  Google Scholar 

  • Luna, G. M., C. Vignaroli, C. Rinaldi, A. Pusceddu, L. Nicoletti, M. Gabellini, R. Danovaro & F. Biavasco, 2010. Extraintestinal Escherichia coli carrying virulence genes in coastal marine sediments. Applied and Environmental Microbiology 76: 5659–5668.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McGeoch, M. A., D. Spear, E. J. Kleynhans & E. Marais, 2012. Uncertainty in invasive alien species listing. Ecological Applications 22: 959–971.

    Article  PubMed  Google Scholar 

  • Meinesz, A., J. Devaugelas, B. Hesse & X. Mari, 1993. Spread of the introduced tropical green-alga Caulerpa taxifolia in northern mediterranean waters. Journal of Applied Phycology 5: 141–147.

    Article  Google Scholar 

  • Molnar, J. L., R. L. Gamboa, C. Revenga & M. D. Spalding, 2008. Assessing the global threat of invasive species to marine biodiversity. Frontiers in Ecology and the Environment 6: 485–492.

    Article  Google Scholar 

  • Morin, P., 1999. Productivity, intraguild predation, and population dynamics in experimental food webs. Ecology 80: 752–760.

    Article  Google Scholar 

  • Naeem, S., 2008. Advancing realism in biodiversity research. Trends in Ecology & Evolution 23: 414–416.

    Article  Google Scholar 

  • Nogales, B., M. P. Lanfranconi, J. M. Pina-Villalonga & R. Bosch, 2011. Anthropogenic perturbations in marine microbial communities. FEMS Microbiology Reviews 35: 275–298.

    Article  CAS  PubMed  Google Scholar 

  • Pedros-Alio, C., 2006. Marine microbial diversity: can it be determined? Trends in Microbiology 14: 257–263.

    Article  CAS  PubMed  Google Scholar 

  • Pedros-Alio, C., 2012. The rare bacterial biosphere. Annual Review of Marine Science 4: 449–466.

    Article  PubMed  Google Scholar 

  • Pernthaler, J., 2005. Predation on prokaryotes in the water column and its ecological implications. Nature Reviews Microbiology 3: 537–546.

    Article  CAS  PubMed  Google Scholar 

  • Perrings, C., K. Dehnen-Schmutz, J. Touza & M. Williamson, 2005. How to manage biological invasions under globalization. Trends in Ecology & Evolution 20: 212–215.

    Article  Google Scholar 

  • Peter, H., S. Beier, S. Bertilsson, E. S. Lindstrom, S. Langenheder & L. J. Tranvik, 2011. Function-specific response to depletion of microbial diversity. ISME Journal 5: 351–361.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pimentel, D., L. Lach, R. Zuniga & D. Morrison, 2000. Environmental and economic costs of nonindigenous species in the United States. Bioscience 50: 53–65.

    Article  Google Scholar 

  • Price, J. E. & P. J. Morin, 2004. Colonization history determines alternate community states in a food web of intraguild predators. Ecology 85: 1017–1028.

    Article  Google Scholar 

  • Proia, L., G. Lupini, V. Osorio, S. Perez, D. Barcelo, T. Schwartz, S. Amalfitano, S. Fazi, A. M. Romani & S. Sabater, 2013. Response of biofilm bacterial communities to antibiotic pollutants in a Mediterranean river. Chemosphere 92: 1126–1135.

    Article  CAS  PubMed  Google Scholar 

  • Randolph, S. E. & D. J. Rogers, 2010. The arrival, establishment and spread of exotic diseases: patterns and predictions. Nature Reviews Microbiology 8: 361–371.

    Article  CAS  PubMed  Google Scholar 

  • Ricciardi, A., M. F. Hoopes, M. P. Marchetti & J. L. Lockwood, 2013. Progress toward understanding the ecological impacts of nonnative species. Ecological Monographs 83: 263–282.

    Article  Google Scholar 

  • Rosindell, J., S. P. Hubbell & R. S. Etienne, 2011. The unified neutral theory of biodiversity and biogeography at age ten. Trends in Ecology & Evolution 26: 340–348.

    Article  Google Scholar 

  • Severin, I., O. Ostman & E. S. Lindstrom, 2013. Variable effects of dispersal on productivity of bacterial communities due to changes in functional trait composition. PLOS One 8: e80825.

    Article  PubMed Central  PubMed  Google Scholar 

  • Simberloff, D., L. Souza, M. A. Nunez, M. N. Barrios-Garcia & W. Bunn, 2012. The natives are restless, but not often and mostly when disturbed. Ecology 93: 598–607.

    Article  PubMed  Google Scholar 

  • Shade, A., H. Peter, S. D. Allison, D. L. Baho, M. Berga, H. Burgmann, D. H. Huber, S. Langenheder, J. T. Lennon, J. B. H. Martiny, K. L. Matulich, T. M. Schmidt & J. Handelsman, 2012. Fundamentals of microbial community resistance and resilience. Frontiers in Microbiology 3: e417.

    Article  Google Scholar 

  • Stoll, C., J. P. S. Sidhu, A. Tiehm & S. Toze, 2012. Prevalence of clinically relevant antibiotic resistance genes in surface water samples collected from Germany and Australia. Environmental Science & Technology 46: 9716–9726.

    Article  CAS  Google Scholar 

  • Taylor, B. W. & M. L. Bothwell, 2014. The origin of invasive microorganisms matters for science, policy, and management: the case of Didymosphenia geminata. Bioscience 64: 531–538.

    Article  Google Scholar 

  • Thingstad, T. F., 2000. Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnology and Oceanography 45: 1320–1328.

    Article  Google Scholar 

  • Tilman, D., 1999. The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80: 1455–1474.

    Google Scholar 

  • Torsvik, V., L. Ovreas & T. F. Thingstad, 2002. Prokaryotic diversity – magnitude, dynamics, and controlling factors. Science 296: 1064–1066.

    Article  CAS  PubMed  Google Scholar 

  • van der Putten, W. H., J. N. Klironomos & D. A. Wardle, 2007. Microbial ecology of biological invasions. ISME Journal 1: 28–37.

    Article  PubMed  Google Scholar 

  • van Elsas, J. D., M. Chiurazzi, C. A. Mallon, D. Elhottova, V. Kristufek & J. F. Salles, 2012. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proceedings of the National Academy of Sciences of the United States of America 109: 1159–1164.

    Article  PubMed Central  PubMed  Google Scholar 

  • Vezzulli, L., I. Brettar, E. Pezzati, P. C. Reid, R. R. Colwell, M. G. Hoefle & C. Pruzzo, 2012. Long-term effects of ocean warming on the prokaryotic community: evidence from the vibrios. ISME Journal 6: 21–30.

    Article  PubMed Central  PubMed  Google Scholar 

  • Vezzulli, L., R. R. Colwell & C. Pruzzo, 2013. Ocean warming and spread of pathogenic vibrios in the aquatic environment. Microbial Ecology 65: 817–825.

    Article  PubMed  Google Scholar 

  • Vitousek, P. M., C. M. Dantonio, L. L. Loope & R. Westbrooks, 1996. Biological invasions as global environmental change. American Scientist 84: 468–478.

    Google Scholar 

  • Walther, B. A. & P. W. Ewald, 2004. Pathogen survival in the external environment and the evolution of virulence. Biological Reviews 79: 849–869.

  • Walther, G. R., E. Post, P. Convey, A. Menzel, C. Parmesan, T. J. C. Beebee, J. M. Fromentin, O. Hoegh-Guldberg & F. Bairlein, 2002. Ecological responses to recent climate change. Nature 416: 389–395.

    Article  CAS  PubMed  Google Scholar 

  • Winter, C., T. Bouvier, M. G. Weinbauer & T. F. Thingstad, 2010. Trade-offs between competition and defense specialists among unicellular planktonic organisms: the “Killing the Winner” hypothesis revisited. Microbiology and Molecular Biology Reviews 74: 42–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu, J. P., 2006. Microbial ecology in the age of genomics and metagenomics: concepts, tools, and recent advances. Molecular Ecology 15: 1713–1731.

    Article  CAS  PubMed  Google Scholar 

  • Yang, L. H., J. L. Bastow, K. O. Spence & A. N. Wright, 2008. What can we learn from resource pulses? Ecology 89: 621–634.

    Article  PubMed  Google Scholar 

  • Zinger, L., A. Gobet & T. Pommier, 2012. Two decades of describing the unseen majority of aquatic microbial diversity. Molecular Ecology 21: 1878–1896.

    Article  PubMed  Google Scholar 

  • Zoppini, A., N. Ademollo, S. Amalfitano, P. Casella, L. Patrolecco & S. Polesello, 2014. Organic priority substances and microbial processes in river sediments subject to contrasting hydrological conditions. Science of the total environment 484: 74–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Short-Term Mobility programme of the CNR (Italy), the National Flag programme RITMARE (SP3-WP2-A2), and the IPA Project “BALMAS—Ballast Water Management System for Adriatic Sea Protection” (project code 1° STR/0005) funded by EU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Amalfitano.

Additional information

Guest editors: Sidinei M. Thomaz, Katya E. Kovalenko, John E. Havel & Lee B. Kats / Aquatic Invasive Species

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amalfitano, S., Coci, M., Corno, G. et al. A microbial perspective on biological invasions in aquatic ecosystems. Hydrobiologia 746, 13–22 (2015). https://doi.org/10.1007/s10750-014-2002-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-2002-6

Keywords

Navigation