Skip to main content
Log in

The impact of salinity on early developmental stages in two sympatric spadefoot toads and implications for amphibian conservation in coastal areas

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Salinity tolerance is critical during the early ontogeny of amphibians, shaping future population size, health and dispersal in a certain area. We focused our research on two related anurans with similar ecological niches—Pelobates fuscus and P. syriacus—inhabiting the western Black Sea coast, at the limits of their ranges. We hypothesize that their differences in salinity tolerance are shaping the actual range limits in coastal areas, within the sympatry zone. We quantified experimentally the impact of salinity (range 0–9‰) during early ontogeny to ask if salinity can modulate their coexistence, by affecting differently reproductive success and fitness. Exposure to salinity from egg to developmental stage Gosner 25 caused mild to severe malformations and affected survival and size in both species, but the impact was lower in P. syriacus compared to P. fuscus when exposed to salt concentrations of 6‰. Embryos of either species did not survive the 9‰ salinity concentration. We expect that increases in salinization up to 6‰ could severely reduce the range of P. fuscus, but not P. syriacus, in coastal areas. These results are highly relevant for the conservation of P. fuscus, which is already declining across Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agasyan, A., A. Avci, B. Tuniyev, J. Crnobrnja Isailovic, P. Lymberakis, C. Andrén, D. Cogălniceanu, J. Wilkinson, N. Ananjeva, N. Üzüm, N. Orlov, R. Podloucky, S. Tuniyev & K. Uğur, 2009. Pelobates fuscus. The IUCN Red List of Threatened Species: e.T16498A5951455. http://dx.doi.org/10.2305/IUCN.UK.2009.RLTS.T16498A5951455.en.

  • Alexander, L. G., S. P. Lailvaux, J. H. Pechmann & P. J. DeVries, 2012. Effects of salinity on early life stages of the Gulf Coast toad, Incilius nebulifer (Anura: Bufonidae). Copeia 2012: 106–114.

    Article  Google Scholar 

  • Altwegg, R. & H. U. Reyer, 2003. Patterns of natural selection on size at metamorphosis in water frogs. Evolution 57: 872–882.

    Article  PubMed  Google Scholar 

  • Araújo, M. B., W. Thuiller & R. G. Pearson, 2006. Climate warming and the decline of amphibians and reptiles in Europe. Journal of Biogeography 33: 1712–1728.

    Article  Google Scholar 

  • Baillie, J. E. M., J. Griffiths, S. T. Turvey, J. Loh & B. Collen, 2010. Evolution Lost: Status and Trends of the World’s Vertebrates. Zoological Society of London, London.

    Google Scholar 

  • Beebee, T. J. C., 1985. Salt tolerances of natterjack toad (Bufo calamita) eggs and larvae from coastal and inland populations in Britain. Herpetological Journal 1: 14–16.

    Google Scholar 

  • Bernabò, I., A. Bonacci, F. Coscarelli, M. Tripepi & E. Brunelli, 2013. Effects of salinity stress on Bufo balearicus and Bufo bufo tadpoles: tolerance, morphological gill alterations and Na+/K+-ATPase localization. Aquatic Toxicology 132: 119–133.

    Article  PubMed  Google Scholar 

  • Berven, K. A., 1990. Factors affecting population fluctuations in larval and adult stages of the wood frog (Rana sylvatica). Ecology 71: 1599–1608.

    Article  Google Scholar 

  • Blaustein, A. R., S. C. Walls, B. A. Bancroft, J. J. Lawler, C. L. Searle & S. S. Gervasi, 2010. Direct and indirect effects of climate change on amphibian populations. Diversity 2: 281–313.

    Article  Google Scholar 

  • Boutilier, R. G., D. F. Stiffler & D. P. Toews, 1992. Exchange of respiratory gases, ions and water in amphibious and aquatic amphibians. In Feder, M. E. & W. W. Burggren (eds), Environmental Physiology of the Amphibians. University of Chicago Press, Chicago: 81–124.

    Google Scholar 

  • Brown, M. E. & S. C. Walls, 2013. Variation in salinity tolerance among larval anurans: implications for community composition and the spread of an invasive, non-native species. Copeia 2013: 543–551.

    Article  Google Scholar 

  • Burraco, P. & I. Gómez-Mestre, 2016. Physiological stress responses in amphibian larvae to multiple stressors reveal marked anthropogenic effects even below lethal levels. Physiological and Biochemical Zoology 89: 462–472.

    Article  PubMed  Google Scholar 

  • Cañedo-Argüelles, M., C. P. Hawkins, B. J. Kefford, R. B. Schäfer, B. J. Dyack, S. Brucet, D. Buchwalter, J. Dunlop, O. Frör, J. Lazorchak, E. Coring, H. R. Fernandez, W. Goodfellow, A. L. G. González Achem, S. Hatfield-Dodds, B. K. Karimov, P. Mensah, J. R. Olson, C. Piscart, N. Prat, S. Ponsá, C. J. Schulz & A. J. Timpano, 2016. Saving freshwater from salts. Science 351: 914–916.

    Article  PubMed  Google Scholar 

  • Church, J. A., P. U. Clark, A. Cazenave, J. M. Gregory, S. Jevrejeva, A. Levermann, M. A. Merrifield, G. A. Milne, R. S. Nerem, P. D. Nunn, A. J. Payne, W. T. Pfeffer, D. Stammer & A. S. Unnikrishnan, 2013. Sea level change. In Stocker, T. F., D. Qin, G. -K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex & P. M. Midgley (eds), Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge: 1137–1216.

  • Cogălniceanu, D., F. Aioanei & B. Matei, 2000. Amfibienii din România. Determinator. Ars Docendi, Bucharest.

    Google Scholar 

  • Cogălniceanu, D., P. J. Székely, C. Samoilă, R. Iosif, M. Tudor, R. Plăiaşu, F. Stănescu & L. Rozylowicz, 2013. Diversity and distribution of amphibians in Romania. ZooKeys 296: 35–57.

    Article  Google Scholar 

  • Collins, S. J. & R. W. Russell, 2009. Toxicity of road salt to Nova Scotia amphibians. Environmental Pollution 157: 320–324.

    Article  CAS  PubMed  Google Scholar 

  • Craft, C., J. Clough, J. Ehman, S. Joye, R. Park, S. Pennings, H. Guo & M. Machmuller, 2008. Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Frontiers in Ecology and the Environment 7: 73–78.

    Article  Google Scholar 

  • Crump, M. L., 1991. Choice of oviposition site and egg load assessment by a treefrog. Herpetologica 47: 308–315.

    Google Scholar 

  • Degani, G. & E. Nevo, 1986. Osmotic stress and osmoregulation of tadpoles and juveniles of Pelobates syriacus. Comparative Biochemistry and Physiology Part A 83: 365–370.

    Article  Google Scholar 

  • Denoël, M., M. Bichot, G. F. Ficetola, J. Delcourt, M. Ylieff, P. Kestemont & P. Poncin, 2010. Cumulative effects of road de-icing salt on amphibian behavior. Aquatic Toxicology 99: 275–280.

    Article  PubMed  Google Scholar 

  • de Oliveira, I., D. Rödder & L. F. Toledo, 2016. Potential worldwide impacts of sea level rise on coastal-lowland anurans. North-Western Journal of Zoology 12: 91–101.

    Google Scholar 

  • Džukić, G., V. Beškov, V. Sidorovska, D. Cogălniceanu & M. Kalezić, 2008. Contemporary chorology of the spadefoot toads (Pelobates spp.) in the Balkan Peninsula. Zeitschrift für Feldherpetologie 15: 61–78.

    Google Scholar 

  • Eggert, C., D. Cogălniceanu, M. Veith, G. Dzukic & P. Taberlet, 2006. The declining Spadefoot toad, Pelobates fuscus (Pelobatidae): paleo and recent environmental changes as a major influence on current population structure and status. Conservation Genetics 7: 185–195.

    Article  Google Scholar 

  • El Hamoumi, R., M. Dakki & M. Thevenot, 2007. Etude écologique des larves d’anoures du Maroc. Bulletin de l’Institut Scientifique, Rabat 29: 27–34.

    Google Scholar 

  • Erwin, K. L., 2009. Wetlands and global climate change: the role of wetland restoration in a changing world. Wetlands Ecology and Management 17: 71–84.

    Article  Google Scholar 

  • Escoriza, D., 2013. New data on larval development in Pelobates varaldii. The Herpetological Bulletin 125: 10–13.

    Google Scholar 

  • European Union (EU), 1992. Council directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Official Journal L 206: 7–50.

    Google Scholar 

  • Findlay, S. E. & V. R. Kelly, 2011. Emerging indirect and long-term road salt effects on ecosystems. Annals of the New York Academy of Sciences 1223: 58–68.

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Mestre, I. & M. Tejedo, 2002. Geographic variation in asymmetric competition: a case study with two larval anuran species. Ecology 83: 2102–2111.

    Article  Google Scholar 

  • Gómez-Mestre, I. & M. Tejedo, 2003. Local adaptation of an anuran amphibian to osmotically stressful environments. Evolution 57: 1889–1899.

    Article  PubMed  Google Scholar 

  • Gómez-Mestre, I. & M. Tejedo, 2004. Contrasting patterns of quantitative and neutral genetic variation in locally adapted populations of the natterjack toad, Bufo calamita. Evolution 58: 2343–2352.

    Article  PubMed  Google Scholar 

  • Gómez-Mestre, I., M. Tejedo, E. Ramayo & J. Estepa, 2004. Developmental alterations and osmoregulatory physiology of a larval anuran under osmotic stress. Physiological and Biochemical Zoology 77: 267–274.

    Article  PubMed  Google Scholar 

  • Gordon, M. S. & V. A. Tucker, 1965. Osmotic regulation in the tadpoles of the crab-eating frog (Rana cancrivora). Journal of Experimental Biology 42: 437–445.

    CAS  Google Scholar 

  • Gosner, K. L., 1960. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16: 183–190.

    Google Scholar 

  • Grinevetsky, S. R., I. S. Zonn, S. S. Zhiltsov, A. N. Kosarev & A. G. Kostianoy, 2015. The Black Sea Encyclopedia. Springer, Berlin.

    Book  Google Scholar 

  • Halse, S. A., J. K. Ruprecht & A. M. Pinder, 2003. Salinisation and prospects for biodiversity in rivers and wetlands of south-west Western Australia. Australian Journal of Botany 51: 673–688.

    Article  Google Scholar 

  • Haramura, T., 2008. Experimental test of spawning site selection by Buergeria japonica (Anura: Rhacophoridae) in response to salinity level. Copeia 2008: 64–67.

    Article  Google Scholar 

  • Haramura, T., 2011. Use of oviposition sites by a rhacophorid frog inhabiting a coastal area in Japan. Journal of Herpetology 45: 432–437.

    Article  Google Scholar 

  • Hart, B. T., P. S. Lake, J. A. Webb & M. R. Grace, 2003. Ecological risk to aquatic systems from salinity increases. Australian Journal of Botany 51: 689–702.

    Article  CAS  Google Scholar 

  • Herbert, E. R., P. Boon, A. J. Burgin, S. C. Neubauer, R. B. Franklin, M. Ardón, K. N. Hopfensperger, L. P. M. Lamers & P. Gell, 2015. A global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands. Ecosphere 6: 1–43.

    Article  Google Scholar 

  • Hof, C., M. B. Araújo, W. Jetz & C. Rahbek, 2011. Additive threats from pathogens, climate and land-use change for global amphibian diversity. Nature 480: 516–519.

    CAS  PubMed  Google Scholar 

  • Hopkins, G. R. & E. D. Brodie Jr., 2015. Occurrence of amphibians in saline habitats: a review and evolutionary perspective. Herpetological Monographs 29: 1–27.

    Article  Google Scholar 

  • Iosif, R., M. Papeş, C. Samoilă & D. Cogălniceanu, 2014. Climate-induced shifts in the niche similarity of two related spadefoot toads (genus Pelobates). Organisms Diversity & Evolution 14: 397–408.

    Article  Google Scholar 

  • Jara, F. G. & M. G. Perotti, 2010. Risk of predation and behavioural response in three anuran species: influence of tadpole size and predator type. Hydrobiologia 644: 313–324.

    Article  Google Scholar 

  • Johnson, P. T. J., M. K. Reeves, S. K. Krest & A. E. Pinkney, 2010. A decade of deformities: advances in our understanding of amphibian malformations and their implications. In Sparling, D. W., G. Linder, C. A. Bishop & S. K. Krest (eds), Ecotoxicology of Amphibians and Reptiles, 2nd ed. Society of Environmental Toxicology and Chemistry Press, Pensacola: 511–536.

    Chapter  Google Scholar 

  • Junk, W. J., S. An, C. M. Finlayson, B. Gopal, J. Květ, S. A. Mitchell, W. J. Mitsch & R. D. Robarts, 2013. Current state of knowledge regarding the world’s wetlands and their future under global climate change: a synthesis. Aquatic Sciences 75: 151–167.

    Article  CAS  Google Scholar 

  • Karraker, N. E., 2007. Are embryonic and larval green frogs (Rana clamitans) insensitive to road deicing salt? Herpetological Conservation and Biology 2: 35–41.

    Google Scholar 

  • Karraker, N. E., J. P. Gibbs & J. R. Vonesh, 2008. Impacts of road deicing salt on the demography of vernal pool-breeding amphibians. Ecological Applications 18: 724–734.

    Article  PubMed  Google Scholar 

  • Karraker, N. E., J. Arrigoni & D. Dudgeon, 2010. Effects of increased salinity and an introduced predator on lowland amphibians in Southern China: species identity matters. Biological Conservation 143: 1079–1086.

    Article  Google Scholar 

  • Kaushal, S. S., P. M. Groffman, G. E. Likens, K. T. Belt, W. P. Stack, V. R. Kelly, L. E. Band & G. T. Fisher, 2005. Increased salinization of fresh water in the northeastern United States. Proceedings of the National Academy of Sciences of the United States of America 102: 13517–13520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kearney, B. D., P. G. Byrne & R. D. Reina, 2016. Short-and long-term consequences of developmental saline stress: impacts on anuran respiration and behaviour. Royal Society Open Science 3: 150640.

    Article  PubMed  PubMed Central  Google Scholar 

  • Metcalfe, N. B. & P. Monaghan, 2001. Compensation for a bad start: grow now, pay later? Trends in Ecology & Evolution 16: 254–260.

    Article  Google Scholar 

  • Morey, S. & D. Reznick, 2001. Effects of larval density on postmetamorphic spadefoot toads (Spea hammondii). Ecology 82: 510–522.

    Article  Google Scholar 

  • Munwes, I., E. Geffen, U. Roll, A. Friedmann, A. Daya, Y. Tikochinski & S. Gafny, 2010. The change in genetic diversity down the core-edge gradient in the eastern spadefoot toad (Pelobates syriacus). Molecular Ecology 19: 2675–2689.

    Article  CAS  PubMed  Google Scholar 

  • Nicholls, R. J., F. M. Hoozemans & M. Marchand, 1999. Increasing flood risk and wetland losses due to global sea-level rise: regional and global analyses. Global Environmental Change 9: S69–S87.

    Article  Google Scholar 

  • Nyström, P., L. Birkedal, C. Dahlberg & C. Brönmark, 2002. The declining spadefoot toad Pelobates fuscus: calling site choice and conservation. Ecography 25: 488–498.

    Article  Google Scholar 

  • Osland, M. J., N. M. Enwright, R. H. Day, C. A. Gabler, C. L. Stagg & J. B. Grace, 2016. Beyond just sea-level rise: considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change. Global Change Biology 22: 1–11.

    Article  PubMed  Google Scholar 

  • Oude Essink, G. H. P., E. S. Van Baaren & P. G. De Louw, 2010. Effects of climate change on coastal groundwater systems: a modeling study in the Netherlands. Water Resources Research 46: W00F04.

    Article  Google Scholar 

  • Richards, S. J. & C. M. Bull, 1990. Size-limited predation on tadpoles of three Australian frogs. Copeia 1990: 1041–1046.

    Article  Google Scholar 

  • Sanzo, D. & S. J. Hecnar, 2006. Effects of road de-icing salt (NaCl) on larval wood frogs (Rana sylvatica). Environmental Pollution 140: 247–256.

    Article  CAS  PubMed  Google Scholar 

  • Shpun, S., J. Hoffman, E. Nevo & U. Katz, 1993. Is the distribution of Pelobates syriacus related to its limited osmoregulatory capacity? Comparative Biochemistry and Physiology Part A 105: 135–139.

    Article  Google Scholar 

  • Sidorovska, V., K. Ljubisavljevic, G. Dzukic & M. L. Kalezic, 2002. Tadpole morphology of two spadefoot toads (Pelobates fuscus and P. syriacus) (Amphibia, Anura, Pelobatidae). Spixiana 25: 183–191.

    Google Scholar 

  • Smith, M. J., E. S. G. Schreiber, M. P. Scroggie, M. Kohout, K. Ough, J. Potts, R. Lennie, D. Turnbull, C. Jin & T. I. M. Clancy, 2007. Associations between anuran tadpoles and salinity in a landscape mosaic of wetlands impacted by secondary salinisation. Freshwater Biology 52: 75–84.

    Article  Google Scholar 

  • Sridhar, V. V. & D. Bickford, 2015. Oviposition site selection in the Malayan Giant Frog (Limnonectes blythii) in Singapore: conservation implications. Asian Herpetological Research 6: 184–188.

    Google Scholar 

  • Stanev, E. V. & E. L. Peneva, 2001. Regional sea level response to global climatic change: Black Sea examples. Global and Planetary Change 32: 33–47.

    Article  Google Scholar 

  • Stănescu, F., R. Iosif, D. Székely, P. Székely, D. Roşioru & D. Cogălniceanu, 2013. Salinity tolerance in Pelobates fuscus (Laurenti, 1768) tadpoles (Amphibia: Pelobatidae). Travaux du Muséum National d’Histoire Naturelle” Grigore Antipa 56: 103–108.

    Google Scholar 

  • Stănescu, F., R. Iosif, P. Székely, D. Székely & D. Cogălniceanu, 2016. Mass migration of Pelobates syriacus (Boettger, 1889) metamorphs. Herpetozoa 29: 87–89.

    Google Scholar 

  • Stewart, K., S. Kassakian, M. Krynytzky, D. DiJulio & J. W. Murray, 2007. Oxic, suboxic, and anoxic conditions in the Black Sea. In Yanko-Hombach, V., A. S. Gilbert, N. Panin & P. M. Dolukhanov (eds), The Black Sea Flood Question: Changes in Coastline, Climate, and Human Settlement. Springer, Dordrecht: 1–21.

    Chapter  Google Scholar 

  • Stuart, S. N., J. S. Chanson, N. A. Cox, B. E. Young, A. S. Rodrigues, D. L. Fischman & R. W. Waller, 2004. Status and trends of amphibian declines and extinctions worldwide. Science 306: 1783–1786.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, M., 2007. Oviposition site selection: pesticide avoidance by gray treefrogs. Environmental Toxicology and Chemistry 26: 1476–1480.

    Article  CAS  PubMed  Google Scholar 

  • Tarkhnishvili, D., I. Serbinova & A. Gavashelishvili, 2009. Modelling the range of Syrian spadefoot toad (Pelobates syriacus) with combination of GIS-based approaches. Amphibia-Reptilia 30: 401–412.

    Article  Google Scholar 

  • Tarvin, R. D., C. S. Bermudez, V. S. Briggs & K. M. Warkentin, 2015. Carry-over effects of size at metamorphosis in red-eyed treefrogs: higher survival but slower growth of larger metamorphs. Biotropica 47: 218–226.

    Article  Google Scholar 

  • Thirion, J. M., 2014. Salinity of the reproduction habitats of the Western spadefoot toad Pelobates cultripes (Cuvier, 1829), along the Atlantic coast of France. Herpetozoa 27: 13–20.

    Google Scholar 

  • Tsimplis, M. N., S. A. Josey, M. Rixen & E. V. Stanev, 2004. On the forcing of sea level in the Black Sea. Journal of Geophysical Research: Oceans 109(C8): 3237–3249.

    Article  Google Scholar 

  • Uchiyama, M. & H. Yoshizawa, 1992. Salinity tolerance and structure of external and internal gills in tadpoles of the crab-eating frog, Rana cancrivora. Cell and Tissue Research 267: 35–44.

    Article  CAS  PubMed  Google Scholar 

  • Viertel, B., 1999. Salt tolerance of Rana temporaria: spawning site selection and survival during embryonic development (Amphibia, Anura). Amphibia-Reptilia 20: 161–171.

    Article  Google Scholar 

  • Williams, W. D., 1999. Salinisation: a major threat to water resources in the arid and semi-arid regions of the world. Lakes & Reservoirs: Research & Management 4: 85–91.

    Article  Google Scholar 

  • Williams, W. D., 2001. Anthropogenic salinisation of inland waters. Hydrobiologia 466: 329–337.

    Article  Google Scholar 

  • Wu, C. S., I. Gómez-Mestre & Y. C. Kam, 2012. Irreversibility of a bad start: early exposure to osmotic stress limits growth and adaptive developmental plasticity. Oecologia 169: 15–22.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The Romanian National Authority for Scientific Research CNCS–UEFISCDI supported our research through Grant PN-II-ID-PCE-2011-3-0173. We are grateful to Danube Delta Biosphere Reserve Administration and the Ethics Committee from Ovidius University of Constanta for providing all the necessary permits and supporting our research in the study area. We thank our colleagues Elena Buhaciuc, Iosif Ruben and Monica Bogdan for help during fieldwork. We are grateful to our reviewers for their constructive comments and recommendations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Székely.

Additional information

Handling editor: Lee B. Kats

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stănescu, F., Székely, D., Székely, P. et al. The impact of salinity on early developmental stages in two sympatric spadefoot toads and implications for amphibian conservation in coastal areas. Hydrobiologia 792, 357–366 (2017). https://doi.org/10.1007/s10750-016-3074-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-3074-2

Keywords

Navigation